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Abstract: Hepatocellular carcinoma (HCC) is a significant cause of morbidity and mortality worldwide. 
Despite significant advancements in detection and treatment of HCC, its management remains a challenge. 
Artificial intelligence (AI) has played a role in medicine for several decades, however, clinically applicable AI-
driven solutions have only started to emerge, due to gradual improvement in sensitivity and specificity of AI, 
and implementation of convoluted neural networks. A review of the existing literature has been conducted 
to determine the role of AI in HCC, and three main domains were identified in the search: detection, 
characterisation and prediction. Implementation of AI models into detection of HCC has immense potential, 
as AI excels at analysis and integration of large datasets. The use of biomarkers, with the rise of ‘-omics’, can 
revolutionise the detection of HCC. Tumour characterisation (differentiation between benign masses, HCC, 
and other malignant tumours, as well as staging and grading) using AI was shown to be superior to classical 
statistical methods, based on radiological and pathological images. Finally, AI solutions for predicting 
treatment outcomes and survival emerged in recent years with the potential to shape future HCC guidelines. 
These AI algorithms based on a combination of clinical data and imaging-extracted features can also support 
clinical decision making, especially treatment choice. However, AI research on HCC has several limitations, 
hindering its clinical adoption; small sample size, single-centre data collection, lack of collaboration and 
transparency, lack of external validation, and model overfitting all results in low generalisability of the 
results that currently exist. AI has potential to revolutionise detection, characterisation and prediction of 
HCC, however, for AI solutions to reach widespread clinical adoption, interdisciplinary collaboration is 
needed, to foster an environment in which AI solutions can be further improved, validated and included in 
treatment algorithms. In conclusion, AI has a multifaceted role in HCC across all aspects of the disease and 
its importance can increase in the near future, as more sophisticated technologies emerge.
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Introduction

Hepatocellular carcinoma (HCC) is the most common adult 
primary liver malignancy causing the fourth most cancer-
related deaths worldwide (1). The highest burden of HCC 
is found in East-Asia and Sub-Sahara Africa, however, it is 
also an emerging major cause of morbidity and mortality 
globally (2). There were significant improvements in 
our understanding of the aetiology and pathogenesis of 
HCC throughout the years, which have contributed to 
novel surveillance, diagnosis and management strategies. 
However, despite these advancements, HCC still poses 
challenges for clinicians worldwide. HCC is characterised 
by presenting at advanced stages, often on a background of 
pre-existing liver disease, which poses diagnostic challenges. 
These challenges are both histological, due to heterogeneity 
of HCC and continuum of its malignant progression and 
radiological due to HCC mimickers such as i-CCA or 
c-CCA and prevalence of atypical radiological features 
(approx. 40%) (3,4). Moreover, extensive background liver 
disease can impede potentially curative therapies (5). Due 
to heterogenicity in pathogenesis and multiple recognised 
risk factors, the biological behaviour of HCC is mostly 
unknown, which translates into discrepancies in staging 
systems and prognosis (6). Moreover, HCC has a high 
recurrence rate following surgical resection, and even 
orthotopic liver transplantation has a five year survival of 
only 65–81% despite using specific criteria (Milan, USFC, 
Kyoto) aimed at selecting patients thought to have better 
long-term outcomes (6,7).

Development of artificial intelligence (AI) provides 
a unique set of novel tools to aimed at solving the 
aforementioned issues and improve HCC detection, 
characterisation, prediction of survival and treatment 
outcomes. Although AI has been applied in medicine for 
over 60 years (8), only the recent research has provided 
a plethora of successful studies with potential for clinical 
impact, including classification of skin cancers (9), breast 
cancer screening (10) or retinal examination (11). AI-
driven solutions can help in early detection of HCC, more 
accurate diagnosis and classification of the tumour, as well 
as predicting disease course and outcomes. In order to 
understand the potential future role of AI in various aspects 
of HCC management, and in-depth review of currently 
available evidence of the role of AI in HCC was conducted. 
By providing an overview of the strengths and limitations 
of AI in HCC, the authors aimed to understand the factors 
limiting widespread clinical adoption of AI-driven solutions 

and provide recommendations on future AI research. 
This review explores AI solutions applied to HCC 

that can be classified into three main domains: detection, 
characterisation and prediction. In the context of this review, 
detection encompasses technologies that highlight an 
abnormality, both in imaging and clinical data, which allow 
for further follow-up. Characterisation includes techniques 
that differentiate between various hepatic abnormalities, 
as well as, stratify and stage previously diagnosed HCC. 
Prediction comprises methods, which use AI for evaluating 
long-term outcomes including overall survival, tumour 
progression or assessment of response to treatment. 
We present the following article in accordance with the 
Narrative Review reporting checklist (available at https://
tgh.amegroups.com/article/view/10.21037/tgh-20-242/rc). 

Definitions 

In order to discuss AI in context of HCC, its definition 
needs to be established. AI describes the use of computers 
and related technology to emulate intelligent behaviour 
and critical thinking of human beings (12). Within AI, 
one of the most commonly used terms is machine learning 
(ML), which can be defined as a discipline in which 
machines (computers) learn from data, with emphasis 
on computational algorithms, which are able to analyse 
billions of data points (13). Of the most commonly used 
AI techniques are artificial neural networks (ANN); 
statistical systems, which mimic the complex architecture 
of biological networks of neurons, to derive outputs, 
based on interactions of weighted inputs and outputs (14). 
Convolutional neural networks (CNN) can be especially 
useful in the medical context, as they have the ability to 
process data with a grid pattern (e.g., radiological images) 
using multiple layers, including convolution and pooling 
layers performing feature extraction to produce final 
output (15). Additional terms related to AI that were used 
throughout this review are defined in Table 1.

Methods

A comprehensive search of Embase, MEDLINE and 
Cochrane Library databases was conducted. The databases 
were searched from their conception to 14th March 2020. 
The search was conducted using MeSH terms and keywords 
for hepatocellular carcinoma (hepatocellular carcinoma, 
HCC) artificial intelligence (AI, artificial intelligence, 
machine intelligence), machine learning (machine learning, 

https://tgh.amegroups.com/article/view/10.21037/tgh-20-242/rc
https://tgh.amegroups.com/article/view/10.21037/tgh-20-242/rc
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ML, deep learning, supervised learning, unsupervised 
learning) artificial neural network (artificial neural networks, 
neural network, ANN, NN) and convolutional neural 
network (convolutional neural network, CNN) combined 
with Boolean operators. Relevant keywords were identified 
using recent related publications on AI in HCC (20,21).

In total, 702 records were identified, and after removal 
of duplicates, 470 records have remained. The titles and 
abstracts were screened by two authors independently 
(MK and AD), and a third author resolved any conflicts 
(TMHG). Inclusion criteria included: original research 
studies, English language, use of AI-driven solutions and 
HCC as primary pathology of interest. Exclusion criteria 
included: malignancies other than HCC as primary 
pathology of interest, age <18, non-original research studies 
(e.g., commentaries, letters to editors, reviews). Relevant 
original research studies were included in the analysis, 
however, conference abstracts and review articles were also 
screened. Manual screening of reference lists of included 
full texts was also performed by two authors (MK and AD) 
independently to look for any missing studies. After the 

list of accepted texts was finalised, full texts were classified 
into one of three domains that have been described in the 
introduction (detection, characterisation and prediction). 
Following classification into domains, data extraction 
was conducted; variables of interest were the number of 
participants/pathological slides/radiological images, AI 
algorithm used, type of validation, AUC (or if not available, 
alternative diagnostic accuracy measures such as sensitivity 
and specificity, c-index or F-score). 

Detection

The summary of literature on HCC detection, based 
on pre-HCC disease models, imaging and biomarkers is 
presented in Table 2.

Pre-HCC disease models

HCC pathogenesis  i s  s trongly l inked to chronic 
inflammatory disease of the liver, which allows for HCC 
detection based on the range of pre-malignant changes. 

Table 1 Glossary of terms related to the use of artificial intelligence in medicine and performance of AI-driven solutions

Term Definition

Artificial intelligence (AI) The use of computers and related technology to emulate intelligent behaviour and critical thinking of 
human beings (12)

Machine learning (ML) A discipline in which machines (computers) learn from data, with emphasis on computational algorithms, 
which are able to analyse billions of data points (13)

Supervised learning Type of ML, which deals with predicting a known outcome, based on inputs, in the presence of an expert 
‘supervisor’ (16)

Unsupervised learning Type of ML, which deals with finding naturally occurring patterns without a pre-defined outcome, without 
the presence of an expert ‘supervisor’ (16)

Artificial neural networks 
(ANN)

Statistical systems, which mimic the complex architecture of biological networks of neurons, to derive 
outputs, based on interactions of weighted inputs and outputs (14)

Convolutional neural network 
(CNN)

Type of deep learning ANN, for processing data with grid pattern (e.g., radiological images) using multiple 
layers, including convolution and pooling layers preforming feature extraction to produce final output (15)

Deep learning A subset of ML, that uses representation learning (automatic discovery of representations from raw data 
for classification or detection) (17)

Area under the curve (AUC) Algorithm performance measure, which can be established based on receiver operator characteristics 
(ROC) curve. AUC takes values between 0 and 1, depending on average sensitivity and specificity for all 
analysed values of the, with values approaching 1 indicating higher performance (18)

Accuracy Algorithm performance measure, taking values between 0% and 100%, based on the number of true 
positive and true negative results, compared to the overall size of the population (18)

C-index (c-statistic) Algorithm performance measure, describing the goodness of fit of the model, taking values between 0 
and 1 (19)
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Table 2 Summary of literature on HCC detection, based on pre-HCC diseases models, imaging and biomarkers

Domain Sub-category Notes N AI algorithm Type of validation AUC (95% CI) Limitations Reference

Pre-HCC 
disease 
models

NAFLD/NASH Serum and liver lipids in 
murine models

15 (5 intervention,  
10 control)

Random forest Development only (no 
validation)

N/A Animal (murine) model not replicated on humans Chiappini et al. 2016 (22)

Population screening for 
NAFLD

500 (146 cases,  
354 controls)

Logistic regression Internal validation (cross-
validation)

0.87 (0.83–0.90) Retrosceptive study design and lack of external validation Yip et al. 2017 (23) 

Cirrhosis/fibrosis/
hepatitis B/hepatitis C 

Progression of cirrhosis into 
HCC 

442 patients Random forest Internal validation c-index 0.64 (0.60–0.90) Study performed in a tertiary centre. Attrition bias. Low 
clinical adaptability potential 

Singal et al. 2012 (24)

Progression of chronic HepC 
infection into fibrosis

533 (349 normal,  
184 fibrosis)

Random forest Internal validation 0.84 (0.82–0.86) Narrow enrolment criteria, reducing generalisability of 
conclusions

Konerman et al. 2015 (25)

Progression of HepB/C into 
HCC

6,561 (Reddy et al.); 
146,218 (Ioannou et al.)

ANN Internal validation (random 
sample split)

0.911–0.962 (range, Reddy et al.); 
0.89 (Ioannou et al.)

Retrospective and cross-sectional character of the studies 
and lack of external validation

Reddy et al. 2017 (26); Ioannou  
et al. 2019 (27)

Miscellaneous HCC development based on 
viral status and clinical data

165 patients Support vector 
machine

Internal validation (cross-
validation)

0.88 Small sample size Książek et al. 2019 (28)

Imaging CT HCC detection on multi-phase 
CT scans 

25 (Lee et al.);  
21 (Okumura et al.)

Temporal subtraction, 
3D global matching

Development only (no 
validation)

N/A Small sample size, proof-of-concept character of both 
studies

Lee et al. 2015 (29); Okumura  
et al. 2011(30)

MRI HCC nodule detection using 
SPIO-MRI in rat models 

40 images ANN Development only (no 
validation)

Classification accuracy 91.76% Animal (rat) models used. No test-retest reproducibility Guo et al. 2009 (31)

Biomarkers N/A Serum 167 (Poon et al.);  
1,582 (Sato et al.)

Multiple techniques 
combined

Development only (no 
validation)

Accuracy 75.9% (Poon et al.); 
0.844–0.940 (range, Sato et al.)

Single centre, internally validated studies with small 
sample size

Poon et al. 2001 (32); Sato et al. 
2019 (33)

Transcriptome 3,981 (2,316 HCC, 1,665 
non-tumorous tissue)

Multiple techniques 
combined

External validation 0.91–0.96 (range) Heterogeneity of data due to pooled analysis of 30 studies Kaur et al. 2020 (34)

Gene co-expression 57 (38 HCC, 19 normal 
samples)

PCA Development only (no 
validation)

N/A Use of retrospective databases and no clinical applicability Zhang et al. 2017 (35)

miRNA N/A Deep belief nets Internal validation (cross-
validation)

F1-score 75.48% Lack of external validation Ibrahim et al. 2014 (36)

Genes 95 (43 tumour, 52 non-
tumour)

ANN Internal validation (cross-
validation)

N/A Proof-of-concept study, use of retrospective gene 
databases

Gui et al. 2015 (37)

Urine 15 samples PCA, random forest Internal validation 0.903 Small sample size Liang et al. 2016 (38)

Biomarker identification from 
literature 

N/A Data mining Internal validation (cross-
validation)

F-score 0.89 Use of impact factor as scoring tool, introducing 
systematic bias into the results

Chang et al. 2017 (39)

HCC, hepatocellular carcinoma; AI, artificial intelligence; AUC, area under the curve; 95% CI, 95% confidence intervals; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; HepB, viral hepatitis type B; HepC, viral hepatitis type C; ANN, artificial neural network; PCA, principal 
component analysis; miRNA, microRNA; N/A, non-applicable; CT, computed tomography; SPIO-MRI, superparamagnetic iron oxide magnetic resonance imaging.
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Chronic viral hepatitis B and C infections are both 
associated with the development of HCC (40,41). Similarly, 
non-viral causes, including non-alcoholic fatty liver disease 
(NAFLD), non-alcoholic steatohepatitis (NASH), cirrhosis 
and fibrosis of the liver are also risk factors for developing 
HCC (42). The stepwise progression of these pathologies 
creates the potential for a screening window, during which 
high-risk individuals can be identified. 

The use of AI-driven solutions in detection of NAFLD 
and NASH has not been comprehensively researched. In a 
2016 study, Chiappini and colleagues investigated serum and 
liver lipids in NAFLD and NASH murine models, using 
supervised ML (random forest analysis). They identified 
unique signatures of NASH, opening new possibilities of 
pre-HCC change detection (22). Population screening 
for NAFLD has also been suggested, with ML-algorithm, 
based on 23 clinical parameters, achieving an AUC of 0.88 
(95% CI, 0.84–0.91) in detecting NAFLD (23).

Substantially more research has been made into the 
association of chronic HepB and HepC infections and 
development of cirrhosis, fibrosis and eventually HCC. 
Progression of cirrhosis into HCC was studied as early as 
2012; it was found that a supervised ML (random forest) 
model outperformed conventional regression analysis, 
achieving a c-index of 0.64 (95% CI, 0.6–0.69) (24). 
Konerman and colleagues used a very similar model to 
predict progression of chronic hepatitis C infection into 
fibrosis, with AUC of 0.86 (95% CI, 0.85–0.87) (25). 

Throughout the years, as ML models have become more 
sophisticated, their diagnostic performance has improved. 
An ANN model by Reddy and Imler, achieved an AUC as 
high as 0.962 in the prediction of malignant transformation 
from hepatitis B or C chronic infection (26). Similarly, 
another recurrent neural network model achieved an AUC 
of 0.89 (27). It is worth highlighting that in all cases, ML 
models have proven to be superior to the classical statistical 
regression model when analysing big data sets.

Moreover, most recent model by Książek et al., used 
patient characteristics, such as viral status, presence 
of comorbidities and laboratory results to predict the 
development of HCC based on 23 quantitative and 26 
qualitative features, has achieved 88.5% accuracy using this 
approach (28).

Imaging

Detection is the most basic way of utilising AI in imaging, 
while more novel approaches focus on characterisation and 

stratification of suspicious imaging regions. While more 
advanced applications of AI in imaging will be discussed 
later in this review, it is important to consider the detection 
of HCC lesions on imaging, which were the precursors to 
current AI applications.

Lee et al. used computer-aided diagnosis (CAD) on 
multi-phase CT scans to detect HCC in a set of 15 
moderate HCC (mean ⌀3.1 cm) and 10 small HCC 
(mean ⌀1.04 cm). Using a non-rigid registration model, 
which accounted for deformation between phases due to 
respiratory movements and heartbeats, they have achieved 
100% detection accuracy, when compared with radiological 
diagnosis (29). Similar results were obtained using 3D non-
linear image wrapping (30). Moreover, in 2009 Guo et al. 
have looked into HCC nodule detection on rat models, 
using SPIO-enhanced MRI, achieving 91.67% classification 
accuracy (31).

Biomarkers 

A variety of biomarkers have been researched, to equip 
clinicians with a reliable tool for HCC detection. Recently 
advances in bioinformatics and technology, resulting in have 
revolutionised the way large biological datasets (‘-omics’ 
datasets) can be generated and analysed, allowing for 
the integration of multiple datasets (genome, proteome, 
transcriptome, etc.) (43). Combination of ‘omics’ with 
AI algorithms has led to the identification of suitable 
biomarkers with the potential to translate data into 
therapeutics (44). The use of biomarkers, identify with the 
aid of neural networks, combined with the classically used 
serological marker for HCC (alpha-fetoprotein), was shown 
to increase diagnostic sensitivity from 60% to 73.8% while 
maintaining the sensitivity of 88.2% (32).

Harnessing the power of ML has also allowed for new 
types of clinical data to be analysed in the hope of detecting 
HCC. Large-scale (2,316 HCC tumour samples and 1,665 
non-tumorous tissue samples) transcriptomic profiling by 
Kaur et al. derived a 3-gene signature (FCN3, CLEC1B, 
and PRC1), which has achieved an AUC of 0.91–0.96 on 
its validation set, which used peripheral blood samples 
containing mononuclear cells of both HCC and healthy 
patients (34). Further, each one of the three genes, showed 
prognostic character, as their expression levels, when 
stratified to greater than mean and lesser than mean groups, 
correlated with overall survival, progression-free survival 
(PFS) and disease-free survival (DFS) on univariate analysis. 

A wide array of HCC biomarkers have been investigated 
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us ing  AI-dr iven techniques :  gene  co-express ion 
patterns (35), miRNA (36), HCC-related genes (37)  
and serum biomarkers (33) have all been suggested as 
potential diagnostic signatures. Urine biomarkers have 
also been identified using ML approaches—Liang and 
colleagues identified five differential metabolites, from 
37 urine samples (25 early-HCC and 12 controls), 
showing a sensitivity of 96.5% and specificity of 83% in 
differentiating between healthy and HCC patients, on an 
independent validation set (n=25) (38).

Another application of AI is data mining, which can 
be used to automatically screen existing literature to 
identify biomarker candidates, making it a useful tool for 
bioinformaticians (39).

Characterisation 

The summary of literature on HCC characterisation, based 
on biomarker, imaging and pathology is presented in Table 3.

Biomarkers

Although the primary use of biomarkers is the detection of 
HCC, ML approaches also allow for stratification of HCC 
patients based on their biomarker profile, which can have 
therapeutic implications, as the response to treatment can 
be dependent on HCC subtype.

Genomics and epigenomics (DNA methylation patterns) 
analysis using ML has allowed for accurate differentiation 
between early-stage (stage I) and late-stage (stages II-
IV) HCC (45). Moreover, Estevez et al. have established a 
biomarker-based classification into HepB-HCC, HepC-
HCC and non-viral HCC, using cytokine profile from 
serum samples (46). Such stratification can have clinical 
implications for management, as well as understanding 
differences in disease pathogenesis.

Imaging 

AI can help analyse radiological features from ultrasound, 
computed tomography (CT) and magnetic resonance 
imaging (MRI), all of which are routinely used in the 
diagnosis and differentiation of liver pathology.

The first use of AI in HCC characterisation based on 
imaging focused on the region of interest (ROI) analysis 
and computer-aided diagnosis systems using US and (47),  
CT (51) or MRI (55). These simple models employed 
analysis of features, such as lesion border or texture, to 

differentiate between benign and malignant liver tumour 
and thus identify HCC. Nowadays, more sophisticated AI-
driven solutions are used in lesion differentiation, with 
greater accuracy and better differentiation, staging and 
stratification abilities.

For ultrasound scan, differentiation between cirrhotic 
liver and HCC, using neural networks can be made with 
94.5% classification accuracy (48). Differentiation between 
atypical HCC and focal nodular hyperplasia (FNH) on 
the contrast-enhanced US, have also been reported, 
achieving 94.4% classification accuracy, when compared 
against pathology report analysis (biopsy or resection) and 
subsequent clinical follow-up (49). High differentiation 
accuracy has also been found for CT and MRI scans (52,64). 
What is more, Yamashita et al. have proven the feasibility 
of CNN assigning Li-RADS grades [an HCC CT/MRI 
scan probability classification used by American College of 
Radiologists (65)], to guide treatment decision-making (66).

AI models can also assist in imaging-based grading 
of HCC. Using contrast-enhanced ultrasound (CEUS), 
Sugimoto et al. established classification into well-
differentiated, moderately differentiated and poorly 
differentiated HCC, with an AUC of 0.863–0.872 (50). 
Similar differentiation based on MRI scans was shown by 
Zhou et al. (56).

Furthermore,  tumour segmentation algorithms 
have been employed to aid in management planning. 
Visualisation of the tumour can dictate decisions regarding 
tumour extent and resection. These algorithms, based on 
contrast-enhanced CT scans, can provide clinically useful 
3D projections with a high degree of accuracy, as shown by 
Li et al. (53).

Most recently, radiomics approach to imaging analysis 
has been proposed, involving a multi-step process to derive 
large datasets of radiological features, via image acquisition, 
segmentation, feature extraction and automated analysis 
of patterns by using high throughput computing (67).  
Studies utilising this methodology shed light on the 
future directions of AI in imaging for HCC, highlighting 
its potential for high accuracy tumour characterisation 
and classification on MRI (57) and multi-phase contrast-
enhanced CT (54) by analysing of textural features. 

Pathology

AI has been used in pathology in order to precisely analyse 
the results of biopsies and resections to help with lesion 
characterisation and differentiation, using image-analysis 
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Table 3 Summary of literature on HCC characterisation, based on biomarkers, imaging and pathology

Domain Sub-category Notes N AI algorithm Type of validation AUC (95% CI) Limitations Reference

Biomarkers N/A Genomics and epigenomics for HCC 
staging

400 (173 early stage, 177 late stage, 50 normal) Support machine 
vector 

Internal validation 
(cross-validation)

0.99 (0.98–0.99) Biomarkers derived from tissue, which requires invasive 
approaches for sample isolation

Kaur et al.  
2019 (45)

Cytokine profile for HepC-HCC, HepB 
HCC and non-viral HCC differentiation

411 (102 HCC, 309 normal) Random forest Development only (no 
validation)

0.90 Small sample size and comparison groups not adjusted 
for ethnicity

Estavez et al. 
2017 (46)

Imaging US Differentiation between focal hepatic 
lesions (benign and malignant)

51 images ROI analysis Development only (no 
validation)

N/A Only two data validators (radiologist); data possibly not 
generalisable

Kim et al.  
2009 (47)

Differentiation between cirrhosis and 
HCC

189 images ANN Internal validation 
(cross-validation)

Accuracy 94.5% Small sample size Bharti et al.  
2018 (48)

Differentiation between atypical HCC 
and focal nodular hyperplasia

257 images ANN Internal validation 
(cross-validation)

F1-score 94.62% Small sample size leading to lack of generalisability and 
network which is difficult to interpret

Huang et al. 
2020 (49)

Grading based on tumour 
differentiation

232 (76 well-differentiated HCC, 133 moderately 
differentiated HCC, 23 poorly differentiated HCC) 

ANN Development only (no 
validation)

Accuracy 87.5% Use of 2D ultrasound and fine-needle biopsy specimen for 
establishing differentiation instead of surgical specimen

Sugimoto et al. 
2016 (50)

CT Differentiation between focal hepatic 
lesions (benign and malignant)

147 images Region of interest (ROI) 
analysis

Internal validation 
(cross-validation)

Accuracy 84.96% Small sample size Mougiakakou  
et al. 2007 (51)

HCC diagnosis from nodular, diffuse 
and massive tumours

165 (46 diffuse tumour, 43 nodular tumours, 76 
massive tumours)

Convolutional neural 
networks (CNN)

Internal validation 
(random sample split)

Accuracy 98.4–99.7% (range) Segmentation performance for diffuse tumour is not as 
good as other types, creating noise in the data

Li et al. 2020 (52)

Tumour segmentation on contrast-
enhanced enhanced CT

201 images Fully convolutional 
neural networks

External validation Accuracy 93.7% Network which is difficult to interpret and restricted by 
GPU memory

Li et al. 2018 (53)

Differentiation between five phases of 
CT

502 images Random forest External validation Accuracy 84–98% (range) Overlap between five phases on CT scan (no clear 
guidelines on start and end of each phase); decision 
based on expertise of principal investigators

Dercle et al. 
2020 (54)

MRI Differentiation between focal hepatic 
lesions (benign and malignant)

320 images ANN, CNN Development only (no 
validation)

Accuracy 93% Single centre character of the studies and sample size 
insufficient for neural network training

Zhang et al. 
2009 (55)

Grading based on tumour 
differentiation

100 (47 low grade HCC, 53 high grade HCC) CNN Internal validation 
(random sample split)

0.73–0.83 (range) Single-centre character of the study, small sample size 
and lack of external validation

Zhou et al.  
2019 (56)

Focal lesion differentiation using 
texture and topological analysis 

150 (50 HCC, 50 metastatic tumours, 50 hepatic 
haemangioma)

ROI analysis Internal validation 
(cross-validation)

0.75–0.95 (range) Large variation in tumour size, affecting classification 
accuracy for the outliers

Oyama et al. 
2019 (57)

Pathology N/A Differentiation between HCC and 
cholangiocarcinoma

106 whole-slide images Deep learning Internal validation 
(random sample split)

0.842 Methodology not reflective of clinical practice, reducing 
general applicability of the results

Kiani et al.  
2020 (58)

Differentiation between healthy tissue 
and HCC

1,773 image features Random forest External validation 0.886 Different in ethological factors between two datasets used Liao et al.  
2020 (59)

Grading of HCC 109 patients ROI analysis, fractal 
dimensions

Internal validation 
(cross-validation)

Accuracy 95.97% (Atupelage et al. 2014); 
accuracy 90.51% (Atupelage et al. 2013) 

Small sample size and lack of external validation. Inclusion 
of non-informative texture features into the classifiers

Atupelage  
et al. 2014 (60); 
Atupelage et al. 
2013 (61)

HCC diagnosis using hyperspectral 
imaging analysis 

14 hyperspectral images Deep learning Internal validation 
(cross-validation)

0.950 Small sample size and single-centre character of the study Wang et al.  
2020 ( 62) 

HCC grading using multiphoton 
microscopy 

217 images CNN Internal validation 
(cross-validation)

0.941(0.913–0.968) Small sample size, insufficient for deep learning purpose Lin et al.  
2019 (63)

HCC, hepatocellular carcinoma; AI, artificial intelligence; AUC, area under the curve; 95% CI, 95% confidence intervals; HepB, viral hepatitis type B; HepC, viral hepatitis type C; ANN, artificial neural network; ROI, region of interest; CNN, convolutional neural network; N/A, non-applicable; CT, computed 
tomography; MRI, magnetic resonance imaging, US, ultrasound scan.
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techniques.
Whole-slide images using H&E stain were analysed by 

Kiani et al. to differentiate between cholangiocarcinoma 
and HCC, achieving 84.2% differentiation accuracy on 
an independent validation set (58). When this model was 
offered as assistance to experienced histopathologists, it 
increased accuracy when correct, but decreased accuracy 
when incorrect, bringing attention to possible negative 
consequences of introducing AI into clinical practice (58). 

Such models, on top of having high diagnostic accuracy 
(88.6% in differentiation accuracy between healthy liver 
tissue and HCC), can also have prognostic value, predicting 
response to treatment, a crucial characteristic for an AI-
driven model to have in the future, to facilitate its clinical 
applicability (59). 

Pathological slides can also be used for HCC grading 
(low-grade HCC vs. high-grade HCC) based on the 
number of nuclei (60) or whole-slide texture analysis (61).

Finally, one of the future applications of AI-driven 
solutions is lab-free, real-time pathological diagnosis, 
suggested by Wang et al. (62). The deep learning model 
yielded 88.1% accuracy, using hyperspectral imaging instead 
of the gold standard frozen sections; a method which is both 
time and labour-intensive. Lin et al. investigated another 
alternative to lab-based tissue processing, multiphoton 
microscopy (MPM), which also shows potential, as the use 
of CNN resulted in 90% differentiation accuracy into low-, 
moderate- and high-grade HCC (63). 

Prediction

The summary of literature on HCC prediction, based on 
treatment outcomes and overall survival is presented in 
Table 4.

Prediction of treatment outcomes

AI algorithms were successfully developed to predict response 
to and survival after transarterial chemoembolization 
(TACE). To forecast survival after TACE, an ANN model 
was produced based on all parameters used by ART, ABCR 
and SNACOR risk scoring systems, as well as, age, gender, 
type of TACE and type of imaging before the second 
TACE. When compared with abovementioned scores, 
risk prediction made by the ANN (AUC 0.83±0.06) was 
found to be significantly superior (P<0.001) to that of ART 
(AUC 0.54±0.08) (68). ANN model has also outperformed 
SNACOR and ABCR, however, the difference was not 

significant (P=0.201 and P=0.143 respectively). All of the 
other studies predicting response to TACE utilised analysis 
of imaging (69-71,87,88). When a combination of extracted 
MRI features, clinical information and therapeutic features 
were used to train logistic regression and random forest 
models, to classify patients as responders or non-responders, 
overall accuracy of 78% was reached (69). Moreover, 
two research groups developed computer tomography 
based convolutional neural network models (70,88). They 
predicted time to progression (TTP) based on follow-up 
CT radiological criteria (mRECIST), to divide patients as 
TACE-susceptible (TTP >14 weeks) or TACE-refractory 
(TTP <14 weeks), and classified patients into one of four 
groups: complete TACE response, partial response, stable 
disease or progressive disease respectively. The models 
achieved 74.2%, followed by 84.3% accuracy with AUC 
scores of 0.95–0.97 for individual prediction categories. 

Finally, Liu and colleagues validated three (one deep and 
two ML), predictive models, based on radiomic features 
of CEUS scans (71). Deep learning model outperformed 
the other two in assigning patients in the validation cohort 
to either objective-response to TACE or non-response, 
reaching 0.93 AUC score. 

AI solutions were also used to predict stereotactic body 
radiotherapy (SBRT) and radiofrequency ablation (RFA) 
outcomes. To challenge currently used dose-volume 
histogram (DVH) based metric and forecast hepatobiliary 
toxicity of SBRT more accurately, Ibragimov et al. trained a 
CNN model on healthy organ CT images, liver SBRT cases 
and nanodosimetric pre-treatment patient features (72). 
The approach used was general with only 36 HCC patients 
out of 125 cases in total. CNN model was moderately 
successful with AUC of 0.76 and overall accuracy similar 
to that of current DVH metric. Enriching the liver SBRT 
database and checking the performance of the toxicity 
prediction framework may improve the future performance 
of the model.

To predict 1- and 2-year DFS of patients who underwent 
CT-guided percutaneous RFA used in early HCC stages, 
Wu and colleagues developed an ANN-based on 15 
clinical features (73). The model was more accurate when 
anticipating 1-year DFS than 2-year DFS, with 85.0% and 
67.9% accuracy, respectively. 

Several AI predictive models were also validated to 
explore post-resection survival and HCC recurrence. 
Currently, the risk is calculated based on the histological 
analysis of resected specimens (74). Deep CNN models 
were shown to optimise this process by implementing the 
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Table 4 Summary of literature on HCC prediction based on treatment outcomes and overall survival 

Domain Sub-category Notes N AI algorithm Type of validation AUC (95% CI) Limitations Reference

Treatment 
outcomes

TACE Response to treatment based on clinical data 
and risk scoring systems

282 ANN Internal validation (random sample split) 0.83±0.06 No independent external validation cohort Mähringer-Kunz 2020 (68)

Response to treatment based on MRI and 
clinical data

36 HCC patients Random forest Internal validation (cross-validation) Accuracy 78% Small patient cohort Abajian et al. 2018 (69)

Response to treatment based on CT images 105 patients CNN Internal validation (cross-validation) Accuracy 74.2% (64–82%) General model applied to multiple TACE 
chemotherapy regimens

Morshid et al. 2019 (70)

Response to treatment based on the 
contrast-enhanced US

130 patients Deep learning Internal validation (random sample split) 0.93 (0.80–0.98) Limited sample size; single-centre retrospective 
data

Liu et al. 2020 (71)

SBRT Hepatobiliary toxicity prediction based on CT 
images

125 patients and 2,644 
images of human organs

CNN Internal validation (cross-validation) 0.85 Limited liver SBRT database Ibragimov et al. 2018 (72)

RFA Disease-free survival prediction 252 1-year and 179 2-year 
DFS 

ANN Internal and external validation 0.84 for 1-year, 0.75 for 2-year 
DFS prediction

Uneven 1-year and 2-year DFS group sizes Wu et al. 2017 (73)

Resection Recurrence risk based on whole-slide 
histological analysis 

522 patients CNN Internal and external validation c-index 0.70 Overfitting (inferior performance on external 
validation set)

Salliard et al. 2020 (74)

Recurrence and progression-free survival 
based on immunological biomarkers 

221 patients Random forest Internal validation (cross-validation) 0.80 No external dataset validation Zhou et al. 2019 (75)

Survival based on CT images 470 patients ANN Internal and external validation 0.803 Most patients had hepatitis B-related HCC Ji et al. 2019 (76)

167 patients Internal validation (cross-validation) 0.825 No external dataset validation Wang et al. 2019 (77)

995 patients Bayesian network Internal validation (cross-validation) Accuracy 57% Lack of temporal information in the patient data Xu et al. 2019 (78)

Microinvasion based on biomarkers and MRI 160 patients Logistic regression Internal validation (random sample split) 0.83 (0.71–0.95) Normalisation of the signal intensities on MR 
images not performed

Feng et al. 2019 (79)

Survival based on BCLC criteria 976 patients Classification and 
Regression Tree

Internal validation (random sample split) c-index 0.604 Majority of patients had favourable liver function Tsilmigras et al. 2020 (80)

Transplantation Recurrence based on clinical data and CT 
images 

133 patients Classification and 
Regression Tree

Internal validation (random sample split) c-index 0.789 (0.620–0.957) Retrospective design Guo et al. 2019 (81)

Overall survival N/A Survival based on biomarkers in HepB-HCC 67 samples (40 patients) Supervised ML Internal validation (cross-validation) Accuracy 78% Small dataset Ye et al. 2003 (82)

Survival based on DNA methylation patens 488 samples Multiple techniques 
combined

External validation Accuracy 63% Reason for 40% of all patients being hard to 
predict remained unclear

Itzel et al. 2019 (83)

377 HCC, 50 control 
samples

Internal validation (cross-validation) 0.95 (mean 10-fold cross-
validation score) 

Limited validation outcomes reported Dong et al. 2019 (84)

Survival based on gene-expression pathways 355 patients Support vector 
machine

Internal and external validation c-index 0.83 Class label of the TCGA HCC samples obtain 
using whole TCGA dataset

Fa et al. 2019 (85)

Survival based on clinical features 165 patients ANN Internal validation (cross-validation) 0.700 No external dataset validation Santos et al. 2015 (86)

HCC, hepatocellular carcinoma; AI, artificial intelligence; AUC, area under the curve; 95% CI, 95% confidence intervals; HepB, viral hepatitis type B; ANN, artificial neural network; CNN, convolutional neural network; TACE, transarterial chemoembolization; SBRT, stereotactic body radiation therapy; RFA, 
radiofrequency ablation; BCLC criteria, Barcelona Clinic Liver Cancer criteria; DFS, disease-free survival; TCGA, The Cancer Genome Atlas; CT, computed tomography; MRI, magnetic resonance imaging.
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analysis of whole-slide digitised histological slides (74). 
Two CNN algorithms reached similar efficiency, however, 
the combination of CNN with human input (tumour areas 
annotated by the pathologist) slightly outperformed the one 
without (AUC 0.78 vs. 0.75). 

Immunological tumour biomarkers were also used as 
a tool for predicting survival, using three indices: Overall 
Survival (≤24 or >24 months), PFS (≤6 or >6 months) and 
recurrence/death producing AUC between 0.76 and 0.8 and 
accuracy over 85% (75). 

Moreover, groups led by Ji and Wang validated CT-based 
ANN and deep CNN to predict survival (76,77). The first 
group developed a novel three-feature radiomic signature 
of contrast-enhanced CT image, where performance was 
improved by combining it with clinical features (c-index 
0.63–0.69 vs. 0.73–0.801). Wang and colleagues employed 
multi-phase CT radiomics features together with clinical 
models to yield a combined model with AUC of 0.82. A 
Bayesian network-based approach was also used to predict 
the probability of post-resection HCC recurrence which 
considered respective recurrence evolution paths for clinical 
feature datasets (78).

At the same time, AI techniques were explored to 
provide information about the predictive power of 
particular biomarkers, which could guide decisions 
on liver resection. Feng et al. used MRI radiomics to 
predict microvascular invasion status of the tumours, an 
important factor for hepatectomy, reaching AUC of 0.83 
for validation dataset (79). Furthermore, an AI model 
was applied to determine the prognostic weight of factors 
comprising the Barcelona Clinic Liver Cancer (BCLC) 
guidelines, which selected alpha-fetoprotein and Charlson 
comorbidity score as the most important preoperative 
factors of overall survival among BCLC-0/A patients, and 
radiologic tumour burden score for BCLC-B patients (80). 
These results have the potential to shape the next iteration 
of BCLC guidelines. 

AI was also used to predict DFS following liver 
transplantation. CT radiomics and clinical risk factors were 
combined to train the model, which yielded c-index of 0.79 
when tested on the validation cohort (81). 

Prediction of overall survival of HCC patients 

ML algorithms have also been used for the general 
prediction of survival in HCC patient population. The 
earliest studies used supervised ML to differentiate 
between metastatic and non-metastatic HCC in HepB 

positive patients based on gene expression, hence obtaining 
information about probable survival chance (82). It also 
identified osteopontin as a biomarker of metastatic HCC. 

Recently, groups led by Itzel and Dong explored 
possibil it ies of using random gene sets and DNA 
methylation levels for survival prognostics (83,84), while 
Fa et al. followed disease-specific patterns in dysregulated 
gene-expression pathways instead of singe genes (85). 
More studies followed with training predictive algorithms 
of clinical features of HCC patients to forecast survival. 
Santos et al. combined a cluster-based oversampling method 
with the neural network model to account for small and 
incomplete datasets, improving the AUC score from 0.69 to 
0.75 (86). 

Discussion 

AI solutions have been applied in all aspects of medicine 
in recent years and HCC is no exception. AI has led to 
advances in detection of HCC (based on pre-malignant 
changes, imaging and biomarkers) due to its ability to 
analyse large datasets and integrate information efficiently. 
Biomarkers identified by the integration of multiple ‘-omics’ 
datasets are especially promising, potentially leading to 
the identification of a biochemical tumour signature, 
revolutionising HCC detection in the future.

As AI algorithms have become more sophisticated, 
research emphasis shifted towards lesion characterisation, 
di f ferent iat ion between var ious  types  of  hepat ic 
malignancies and stratification of patients into groups, 
based on the tumour stage or grade. Various datasets, such 
as radiological images or clinical and pathological data, can 
be used separately or in combination to provide accuracy 
superior to that of traditional statistical tools. What is more, 
AI-driven solutions can help in reducing interobserver 
variability when analysing imaging studies, leading to 
standardisation. Since most of the hepatocellular cancers 
develop on the background of chronic liver disease, future 
efforts in HCC characterisation should focus on accurate 
differentiation between pre-malignant changes and early 
malignancy, to provide the most clinical benefit.

AI methods for prediction of overall survival and 
treatment outcomes in HCC have emerged in the past 
two years and remain a dynamic area of study. Predictive 
potential of current models is higher for short-term 
outcomes rather than long-term survival, however, this 
approach offers an array of novel predictive tools to shape 
HCC guidelines and support clinical decision making. In 
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the future, models combining radiomic data with clinical 
features to provide characterisation and prognosis for HCC 
patients are likely to be implemented in the clinical practice 
to support decisions on treatment. 

Limitations

AI has inherent limitations, and this holds true for its 
medical applications for HCC detection, characterisation 
and prediction. Most of the studies discussed in this review 
suffer from a small sample size, which is a major issue for 
deep learning algorithms, as they require large training 
dataset to perform well. What is more, a lot of the studies 
use single-institution data, often from tertiary care centres. 
As a result, despite achieving high AUC and accuracy, 
such AI algorithms often cannot be used outside a narrow 
context, ultimately hampering widespread clinical adoption 
of AI within HCC. Specific limitations also exist in each of 
the three domains discussed. Studies on detection, focus 
on specific subtypes of HCC and narrow populations 
(e.g., HBV positive patients), rendering the proposed AI 
algorithms are unable to perform screening for HCC on the 
level of the general population. Studies on characterisation 
are limited by lack of standardisation of biomarker assays, 
imaging techniques and histological specimen preparation, 
all of which contribute to difficulties in applying the results 
of the research in settings different than the original. Even 
though significant advancements in the implementation of 
HCC outcomes prediction have been made in the recent 
years, there are many outstanding questions. Interpretation 
of algorithm outcomes remains a major challenge as it is 
difficult to explain why the model fails to make accurate 
predictions for a proportion of cases. 

This review is also not devoid of limitations. Firstly, 
the methodology of the study, being a literature review 
limits the applicability of its conclusions. Moreover, the 
heterogeneity of quantitative data and AI methodologies 
has not allowed for pooled analysis of outcomes, but only 
a qualitative synthesis of evidence. The three-domain 
classification that was adopted for the purposes for that 
review is also imperfect, as more recent studies often discuss 
potential uses of HCC across more than one domain, by 
utilising multiple types of data to inform clinical decisions. 
Moreover, selection bias might exist, and studies as studies 
with negative findings might not be published. Finally, this 
review only aimed at assessing studies in English, however, 
high-quality studies in other languages might exist. 

Future research directions

Consistency in reporting and transparency in publishing AI 
algorithms can significantly improve the clinical value of 
studies exploring AI models applied to HCC. Discrepancies 
in data standards and diagnostic devices used across 
different treatment centres contribute to overfitting of 
AI models, which needs to be overcome to facilitate the 
development of AI solutions with general applicability (89).  
External validation of the AI algorithms should also be 
favoured over retrospective internal validation, further 
increasing the applicability of the AI-driven solutions. 
International and interdisciplinary collaboration is 
instrumental in approaching this issue, as shown in a 
recent study that investigated an AI model in breast cancer 
diagnosis using data from both the UK and US (10).  
What is more, widespread availability of source code for 
algorithms can speed the process of AI development and 
validation, also contributing to larger applicability of 
these solutions. Finally, effective communication between 
computer scientists, engineers and clinicians is crucial for 
generating research which can redefine the current practice 
to address unmet clinical needs.

Conclusions

AI will revolutionise the way we detect and characterise 
HCC, as well as predict the course of its development, 
however, it is still experimental. In recent years, the rise 
of big data has caused AI-driven solutions utilising clinical 
data, radiological images, biomarkers and pathology results 
to emerge and gradually improve in accuracy, however, 
their widespread introduction into the clinical practice has 
not occurred yet. Robust validation, large scale studies, 
multicentre cooperation, advocacy for AI and education 
on AI amongst clinicians are all necessary for AI models to 
take the next step, so that in the future, such models using 
multiple data modalities, have the chance of influencing 
HCC guidelines and shaping clinical practice.
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