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Introduction

Neuroendocrine tumors (NETs) and neuroendocrine 
carcinomas (NECs) are a diverse family of neoplasms 
that range in behavior from indolent to highly aggressive. 
Well-differentiated NETs frequently originate from 
enterochromaffin cells in the gastrointestinal tract and lungs. 
They are characterized clinically by a relatively slow growth 
rate (compared to most malignancies) and a propensity 
to produce hormones and vasoactive substances (1).  
The genetic landscape of well-differentiated NETs 
typically consists of mutations in genes such as MEN1 and 
DAXX, which are associated with chromatin remodeling 
(2,3). Tumor mutational burden is relatively low, and 
microsatellite instability is extremely rare (4,5). Poorly-
differentiated NECs are highly aggressive malignancies, 

typically categorized as small cell and large cell. Small 
cell lung carcinomas and Merkel cell cancers are variants 
of poorly differentiated NECs which fall outside of 
the scope of this article. The mutational landscape of 
poorly differentiated NECs is similar to that of non-
neuroendocrine cancers, with mutations in p53 and Rb1 
predominating. Tumor mutational burden is generally 
higher than observed in well-differentiated NETs (5-7).

Clinical trials of immunotherapy have only recently 
been completed in neuroendocrine neoplasms (NENs). 
Although data have demonstrated a relatively limited role 
for PD-1 inhibitor monotherapy, other immunotherapeutic 
approaches may yield improved results. In this article, we 
summarize the preclinical data on the immune landscape 
of NETs and NECs, and review the key clinical trials 
conducted thus far.
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The immune landscape of NENs

Multiple immune cell types, including T cells, NK cells, 
mast cells, macrophages as well as dendritic cells infiltrate 
NENs of different origins and grades. However, despite 
tumor infiltration and possibly immune recognition, 
NENs are able to escape the host immune response and 
avoid immunosurveillance by exploiting multiple local and 
systemic resistance mechanisms including the deactivation 
of T cells, dysregulation of T regulatory (Treg) cells and 
the creation of an immunosuppressive cytokine milieu with 
tolerogenic properties.

Lymphocyte infiltration—pNETs 

Lymphocyte infiltration is a frequent event in both 
gastroenteropancreatic (GEP) and bronchial NETs. In 
a series of 87 pancreatic NETs (pNETs), CD3+ T cell 
infiltration was reported in 68% of the tumors and was not 
associated with tumor grade or other clinicopathological 
variables. Among patients with intermediate-grade pNETs, 
low-density lymphocyte infiltration appeared to predict 
recurrence following tumor resection compared to high 
density infiltration (8). Conversely, in a recent study of 
244 GEP-NETs, high levels of intratumor lymphocyte 
infiltration were described to be significantly associated with 
higher tumor grade and shorter survival (9). Consistently, 
in a multispectral imaging analysis comparing 47 low-
grade pNETs with 5 high-grade pNETs and pNECs, T cell 
infiltration increased with grade (10).

Lymphocyte infiltration—small bowel NETs

In a cohort of 102 G1/G2 primary small bowel NETs, 
an intratumor host immune response was reported in 
approximately two-thirds of tumors, with the extent of 
the lymphocyte infiltration being significantly higher in 
duodenal NETs as compared with jejunal or ileal NETs (11).  
Of note, ectopic lymph nodes with activated germinal 
centers were observed at the tumor edge in about one-
fifth of the cases. In another study of 62 patients with small 
bowel NETs, lymphoid aggregates were found in 27% of 
tumors, and infiltration of CD8+ T cells was described 
in the 97% of the samples (12). At present, the biological 
significance of tertiary lymphoid structures in NETs 
remains unclear. Intriguingly, T lymphocytes have been 
reported to specifically recognize NET cells. Indeed, the 
presence of CD8+ T cells reactive against NET-associated 

antigens such as chromogranin A or tryptophan hydroxylase 
has been demonstrated in patients with midgut NET (13). 
More recently, T cells reactive against tumor neoantigens 
have been recognized in the blood of patients with 
metastatic rectal NETs (14).

Lymphocyte infiltration—lung NETs

In pulmonary NETs, the density of CD8+ T lymphocyte 
infiltration seems to parallel the degree of tumor 
differentiation. Indeed, a moderate-to-high host immune 
response has been detected in 7% of well-differentiated 
lung NETs (carcinoid tumors) and 20% of small cell and 
large cell NECs (15). In a study of 159 low- and high-grade 
pulmonary NETs, a high density of CD8+ T cells has been 
shown to independently predict both overall survival (OS) 
and progression-free survival (PFS) (16). By contrast, no 
association has been recently demonstrated between host 
immune response and survival outcomes in a study of 168 
patients with typical or atypical lung carcinoids (17). In a 
retrospective analysis of 95 large cell NECs of the lung, 
infiltration of CD8+ and CD4+ T cells was recorded in 
55% and 80% of cases respectively. Tumor infiltration by 
CD4+ T cells independently predicted shorter relapse-free 
survival (18).

Treg-driven immunosuppression 

The presence of immunosuppressive FoxP3+ Treg cells has 
been shown to be more abundant in high- versus low-grade 
pNETs, and independently predicts dismal prognosis (8,19). 
Regardless of the density of tumor infiltration, circulating 
levels of Treg cells have been found to be significantly 
higher in patients with midgut NETs as compared with 
healthy subjects, and the lower proliferative capability of 
T cells derived from patients with midgut NETs has been 
ascribed to a Treg-driven suppression of systemic Th1-
promoting cytokines such as IL-12 and IL-1b (20).

NK cells have demonstrated impaired cytolytic activity 
in GEP-NETs. In particular, a deficient interferon (IFN)-a 
response has been observed in patients with midgut NETs, 
where NK cell activity could be restored by exogenous 
treatment with interferon (21). Moreover, an increased NK 
cell activity has been associated with tumor regression (22).  
Mast  ce l l s  may have  a  prominent  role  in  pNET 
progression. Evidence from a mouse model of pancreatic 
b-cell tumorigenesis suggests that tumor-infiltrating mast 
cells regulate neoangiogenesis and tumor expansion. 
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In this context, pharmacological inhibition of mast cell 
degranulation has proved effective in inducing cancer 
regression in mice harboring islet-cell tumors (23,24).

Tumor-infiltrating macrophages and antigen presentation

Evidence from murine models suggests that tumor-
infiltrating macrophages contribute to both angiogenic 
switch and pNET progression (25). Consistently, the 
density of macrophage infiltration appears to be higher 
in poorly differentiated NECs than in well-differentiated 
NETs (26). Large series studies have shown that a dense 
macrophage infiltration predicts recurrence following 
surgery (27,28).

Antigen presentation is potentially impaired in NETs. 
Carcinoid-specific soluble immune inhibitory factors have 
been shown to down-regulate both maturation and function 
of dendritic cells in bronchial NETs (29). In addition, in 
a study of 104 surgically resected pNETs, the expression 
of HLA class I molecules has been demonstrated to be 
defective in 70% of cases (28). In another study, the MHC 
molecule b2-microglobulin has been shown to be altered in 
10/11 samples of pNETs (30).

Immune checkpoint inhibition 

In recent years, multiple investigations have been 
carried out to characterize the expression of the immune 
checkpoint molecules programmed death-ligand 1 (PD-
L1) and programmed death-1 (PD-1) in NETs and NECs 
(9,11,17,18,28,31-41). As shown in Table 1, both the 
expression of PD-L1 and the extent of tumor infiltration 
by PD-1 lymphocytes appear to be higher in high-
grade or poorly differentiated neoplasms rather than in 
well-differentiated tumors. Differences in the clinical 
characteristics of accrued patients (i.e., primary site, grade, 
fraction of metastatic cases), in the type of samples analyzed, 
in the mAb clone used for PD-L1 testing as well as in the 
criteria used for staining interpretation may account, at least 
in part, for the heterogeneity of results seen across different 
studies. It is currently unclear whether the expression of 
PD-1 or PD-L1 has any prognostic potential.

Clinical trials of immune checkpoint inhibitors

Several phase II studies have recently explored single-
agent and combination therapy with immune checkpoint 
inhibitors. 

Monotherapy trials

The KEYNOTE-028 study, a large multi-cohort phase 1b 
study evaluating the safety and efficacy of pembrolizumab 
in patients with PD-L1-positive advanced solid tumors 
included 41 NET patients (42). Four (10%) patients 
experienced objective responses while 71% experienced 
stable disease. Duration of response ranged from 6.9– 
17.6 months in the 4 responders. This data led to 
the inclusion of a NET cohort on the subsequent 
KEYNOTE-158 study. The KEYNOTE-158 study 
included a  large cohort  of  “wel l  and moderately 
differentiated” NETs originating in the lung, appendix, 
small intestine, colon, rectum, or pancreas (43). Patients 
were required to have progressed on at least one prior 
line of therapy, with no limit on the number of prior lines. 
Therapy consisted of pembrolizumab at a standard dose 
of 200 mg every 3 weeks, for up to 2 years. The primary 
endpoint was overall response rate (ORR), assessed per 
RECIST 1.1 by independent central radiology review. Of 
the 107 patients who were treated on the NET cohort, 
67.3% had received ≥2 prior therapies and 15.9% had 
PD-L1 positive tumors [defined as combined positive 
score (CPS) ≥1 on IHC analysis]. At the time of data cut-
off, ORR was 3.7% (95% CI, 1.0–9.3%), with 4 partial 
responses (PR) and no complete response (CR). Of the 
four patients with PRs, three had pancreatic, and 1 had a 
gastrointestinal NET of unknown primary, all of whom had 
PD-L1 negative tumors. PFS was 4.1 months (95% CI, 3.5–
5.4 months) and the 6-month PFS rate was 38.2%. Median 
overall survival (OS) was not reached at the time of data 
cut-off, and the 6-month OS rate was 84.6%. Treatment-
related adverse events (AEs) occurred in 75.7% of patients, 
with 20.6% having grade 3-4 AEs.

Another phase II study of pembrolizumab was conducted 
in high-grade NENs, excluding NENs of thymic or lung 
origin, who had progressed on prior platinum-based 
therapy (44). Therapy consisted of pembrolizumab at a 
standard dose of 200 mg every 3 weeks, for up to 2 years. 
The primary endpoint was ORR per RECIST 1.1. Of the  
21 patients enrolled, 15 patients had available archival 
tissue for PD-L1 and tumor infiltrating lymphocytes 
(TILs) testing. Forty-seven percent had P-L1 staining 
>1% and 53% had evidence of TILs >2+ (>10 TILs/HPF). 
At the time of data cut-off, 16 patients were evaluable for 
response. ORR was 4.7%, with one PR and no CRs. Of 
the remaining patients, 3 (4.7%) patients experienced SD 
and 12 (57%) experienced PD. The one patient with a PR 
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was negative for PD-L1 and had evidence of >20 TILs/
HPF. Median PFS was 9.14 weeks (95% CI, 6.71–13.14 
weeks) and median OS was 15.4 weeks (95% CI, 13 weeks–
not reached). Treatment-related AEs occurred in 37% of 
patients, with 28% having grade 3 AEs. 

Two similar phase II studies were conducted in patients 
with high-grade NENs who had progressed on prior 
platinum-based therapy, one utilizing avelumab in NENs 
of any primary origin excluding small cell lung cancer and 
Merkel cell carcinoma, and another with pembrolizumab 
in extrapulmonary NECs (excluding well-differentiated 
grade 3 NENs) (45,46). Twenty-nine patients were treated 
with avelumab, and at time of data cut-off, median DCR 
after 8 weeks of treatment was 32% with 2 PRs (7%), 
and median OS was 4.2 months. Treatment related AEs 
occurred in 38% of patients, with 4% having grade 3 AEs. 
The pembrolizumab trial was designed as a 2-stage study, 
with patients enrolled on stage 1 receiving pembrolizumab 
monotherapy. Data from stage 1 of the study was recently 
presented, reporting that of 14 patients enrolled, ORR 
was 7%. Median PFS was 58 days and 43% of patients 
discontinued treatment for clinical deterioration or 
radiographic PD prior to the first scheduled scan at  
9 weeks. At last follow-up, one patient was still on 
treatment after 19 cycles. Treatment related AEs were 
mild, with no patients experiencing grade 3-5 AEs 
attributable to therapy. 

A phase II study of spartalizumab (PDR001), a humanized 
anti-PD-1 antibody, was conducted in patients with non-
functional, well and poorly-differentiated NENs (47).  
Patients with a well-differentiated NET of GEP or 
thoracic origin, refractory to prior anti-cancer therapies, 
including everolimus, or poorly differentiated GEP 
NEC patients who progressed on at least one prior line 
of cytotoxic chemotherapy were eligible for enrollment. 
Patients were enrolled regardless of PD-L1 expression. 
The primary endpoint was ORR, assessed per RECIST 
1.1 by independent central radiology review. ORR was 
7.4% in well-differentiated NETs and 4.8% in poorly-
differentiated GEP NECs. Patients with lung NETs 
had a higher ORR at 20%, although 2 of 6 responding 
patients expired shortly after initial response. Among 
patients with poorly-differentiated GEP-NECs, well-
differentiated GEP-NETs and lung NETs, the rate of 
expression of PD-L1 in immune cells was 42%, 23% and 
15% respectively. Biomarker results suggested a potential 
link between TIM-3 expression and lack of treatment  
response.
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Combination IO therapy trials

The Southwest Oncology Group (SWOG) DART (Dual 
Anti-CTLA-4 and Anti-PD-1 Blockade in Rare Tumors) 
trial is a phase II basket trial of ipilimumab and nivolumab 
in rare tumors, including two cohorts of NENs: one defined 
as “neuroendocrine carcinoma, including carcinoid of the 
lung” but enrolling well and poorly differentiated NENs of 
any primary site (48). and the other defined as “endocrine 
carcinoma of the pancreas and digestive tract”, but enrolling 
well and poorly differentiated NENs. Patients are eligible if 
they progressed on at least one prior line of therapy. Study 
treatment consists of ipilimumab 1 mg/kg every 6 weeks 
and nivolumab 240 mg every 2 weeks until local investigator 
determined progression of disease. Preliminary analysis of 
the “neuroendocrine carcinoma including carcinoid of the 
lung” cohort was recently presented. Fifty-eight percent 
of patients had high-grade cancers (differentiation not well 
defined), 30% had intermediate-grade tumors, and 12% 
low-grade tumors. The ORR was 24%, all responders with 
high-grade tumors (which included 2 high-grade lung 
NECs). Forty-two percent of high-grade tumors responded 
while none of the low or intermediate grade tumors 
responded. Six-month PFS was 30% and mean OS was 11 
months at the time of data cut-off. The toxicity profile was 
relatively mild, with 30% of patients reporting fatigue and 
27% reporting nausea. Elevated alanine aminotransferase 
(ALT) was the most common (9%) grade 3-4 immune-
related AE.

Towards novel immunotherapeutic strategies

In addition to checkpoint inhibitors, bispecific tumor-
targeting antibodies (BsAbs) are a new class of drugs allowing 
for simultaneous engagement of two targets, theoretically 
increasing binding specificity, allowing for dual activation 
or blockade of two disease mediators. A recent, phase I, 
first-in-human study of a new BsAb (XmAb18087) targeting 
somatostatin receptor (SSTR) subtype 2 and CD3 in well-
differentiated neuroendocrine and gastrointestinal stromal 
(GIST) tumors began accrual in early 2018 and recruitment 
is ongoing (NCT03411915).

Adoptive transfer of genetically-modified autologous 
T cells is gaining traction as one of the most promising 
advances in cancer immunotherapy, and impressive 
outcomes have been recently recorded in clinical trials of 
chimeric antigen receptor (CAR) T cells targeting CD19 
or B cell maturation antigen (BCMA) in patients with B 

cell malignancies (49). CARs are synthetic fusion proteins 
consisting of an extracellular antigen-recognition domain 
linked to an intracellular activating domain. Once activated, 
CAR T cells proliferate and exert their effector functions 
including lysis of target cells, leading to “epitope spreading” 
and consequent induction of a secondary immune response 
against the tumor. Research is currently underway to 
develop CAR T cells directed against somatostatin receptor-
expressing NET cells. Data presented this year show 
preliminary evidence of antitumor activity against NET cell 
lines and experiments in mice are currently underway (50). 

Oncolytic viruses engineered to selectively kill tumor 
cells have exhibited activity in melanoma and head and 
neck cancers (51-53). An oncolytic adenovirus (AdVince) 
for the treatment of liver metastases from NETs was 
recently developed and is now being evaluated in a phase I/
IIa clinical trial for patients with liver dominant NETs of 
GEP or bronchial origin (NCT02749331). The adenovirus 
is designed to utilize the gene promoter from human 
chromogranin A for selective replication in neuroendocrine 
cells, and in preclinical evaluation of the virus, was found to 
successfully replicate in and kill NET cells without inducing 
a considerable amount of proinflammatory cytokines or 
chemokines in blood (54).

Conclusions

While the majority of well-differentiated NETs are 
“immunologically cold,” poorly differentiated NECs are 
more likely to express PD-L1 in the presence of an abundant 
T cell infiltration. Single agent PD-1 inhibitor therapy 
has demonstrated limited activity in well-differentiated 
NETs, although preliminary evidence suggests that lung 
NETs may be mildly more immunosensitive than NETs 
of the GI tract. Surprisingly, PD-1 inhibitors have also 
shown limited activity in patients with poorly differentiated 
NECs (excluding Merkel Cell Cancers and Lung NECs, 
which are biologically distinct). Very early data suggest 
that combination ipilimumab/nivolumab treatment may be 
associated with promising activity in poorly differentiated 
NECs. These preliminary findings require confirmation. 
Novel immunotherapeutic approaches such as bispecific 
antibodies and CAR-T cells may one day represent a new 
paradigm for the treatment of well-differentiated NETs. 
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