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Introduction

Cell fate and identity depend on the expression of a specific 
array of proteins at a precise moment. In eukaryotes the 
expression of multi-exon genes requires the efficient and 
correct removal or splicing of introns by the spliceosome, 
a highly flexible and reversible multiprotein enzyme. 
Alternative splicing affects 95% of genes and allows the 
generation, in a cell-type specific manner, of different 
mRNA isoforms from a single gene coding for proteins 
with even opposing functions (1). Alternative splicing can 
also modulate gene expression through for instance the 
inclusion or exclusion of poison exons able to activate non-
sense mediated mRNA decay (NMD) (2-4). Therefore, 
transcription and alternative splicing are two tightly 

regulated processes responsible for the diversity of the 
proteome. The output of a splicing event depends on 
multiple factors including (I) cis-acting sequence motifs 
at splice sites at the exon-intron boundaries required 
for spliceosome assembly, and at the splicing enhancer 
and repressor motifs within the pre-mRNA which are 
recognized by RNA-binding proteins (RBP); (II) the 
concentration and availability of a large array of trans-
acting regulatory splicing factors or RBPs able to bind 
the enhancer and repressor motifs and to modulate 
spliceosome activity and splice site selection; and (III) the 
kinetic competition between different spliceosome assembly 
pathways (5-8). Two key families of RBPs, the serine/
arginine‐rich proteins (SR proteins) and the heterogeneous 
nuclear ribonucleoproteins (hnRNPs), regulate splicing in 
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a synergic or competitive context-dependent manner and 
through many different mechanisms (5,7,9).

Alterations of splicing have been implicated in the 
development of different diseases including cancer (10). 
Malignant cell transformation requires the acquisition 
of several neoplastic capabilities through the activation 
of oncogenes and the inactivation of tumor suppressor  
genes (11). Differential splicing of specific genes and 
splicing factor alterations are present in most types of 
tumors and can be associated with each of the cancer 
hallmarks identified by Hanahan and Weinberg (6,9,12-14)  
In fact, the network of alternatively spliced transcripts is 
reprogrammed in cancer cells (13). These alterations can be 
associated with the presence of mutations in cis-acting splice 
sites or regulatory motifs and/or in the coding sequence of 
trans-acting splicing factors. However, and importantly, they 
can also be due to changes, even modest, in the expression, 
function and location of unmutated splicing factors (9,13) 
which can for instance be induced by the activation of 
specific signaling pathways (5,15). 

In the last years it has been demonstrated that the 
splicing machinery, including spliceosome components 
and RBPs, regulates many relevant cellular processes in 
a splicing-independent manner. These processes include 
the maintenance of genome integrity by preventing 
the formation of RNA-DNA hybrids (R-loops) and by 
influencing the DNA damage response (DDR), transcription 
elongation and termination, mRNA nuclear export and 
translation-dependent non-sense mRNA decay response 
(NMD) (9,10). Importantly, these observations reveal 
the relevance that subtle changes in the abundance, post-
translational modifications and/or subcellular localization 
of splicing factors and/or spliceosomal components may 
have, apart from splicing and gene expression, on very 
relevant cellular events which are central to the process of 
carcinogenesis. 

Alternative splicing in HCC

Hepatocellular carcinoma (HCC), the most frequent 
tumor of the liver, develops in more than 80% of cases 
on a chronically damaged organ where hepatic functions 
have been lost. Molecularly, HCCs are very heterogeneous 
and different subclasses have been described according to the 
genetic alterations and biomarkers detected, in an attempt 
to improve the management of patients and the discovery of 
effective therapeutic strategies nowadays still elusive (16,17).

Alternative splicing is also emerging as a relevant player 

in the progression of liver disease (15,18) and recent high 
throughput studies have described the landscape of aberrant 
alternative splicing events in HCC (19-21). As described 
above, changes in splice variants may be associated with 
mutations on the splicing recognition motifs or with 
the dysregulation of splicing factors. Mutations, mis-
localization and alterations in the level of expression of 
splicing factors have been described in HCC. For instance, 
the gene amplification and up-regulation of the spliceosome 
component splicing factor 3b subunit 4 (SF3B4) have been 
detected in precancerous lesions of HCC, being suggested 
as early-stage diagnostic markers and correlating with 
poor prognosis in HCC (22). A recent genome-wide study 
characterized the genetic alterations of RBPs in HCC and 
stablished the perturbations in the protein-RNA regulatory 
interactome in HCC (23). This study showed that somatic 
mutations are enriched in RBP binding sites and identified 
some interactions related to specific subtypes of HCC. 

Regarding changes in localization, the cytosolic retention 
of the SR-protein SRSF3 through its interaction with 
the hepatitis B virus protein HBx, correlates with poor 
overall survival of HCC patients. Importantly, it has been 
associated with the aberrant splicing and up-regulation of an 
oncogenic truncated splice-isoform of CCDC50, an effector 
of epidermal growth factor (EGF)-mediated cell signaling 
implicated in the oncogenic progression of HCC (24). 

Both up-regulation and down-regulation of splicing 
factors have been reported in HCC. hnRNPA1 and A2 (25) 
are upregulated in HCC and the induction of hnRNPC (20), 
hnRNPH1 and H2 (26), SRSF2 (27) and PTBP3 (28) has 
been correlated with poor prognosis. On the other hand, 
and as reviewed below, the downregulation of SRSF3 (29),  
SLU7 (30) and ESRP2 (31) has been also described in HCC.

In the next sections we will focus on selected altered 
splicing events. We will provide a new perspective of the 
changes in splicing factors in relation with the acquisition 
of specific cancer hallmarks during the process of 
hepatocarcinogenesis.  

Alterations of splicing and hepatocyte de-
differentiation in hepatocarcinogenesis 

Epigenetic modifications, changes in the levels of expression 
of transcription factors, and regulation of mRNA processing 
are crucial for genome reprogramming during development 
and for the establishment of  t issue-specif ic  gene  
expression (32). Accordingly, the transition from the 
proliferative fetal liver to the metabolic functional postnatal 
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organ and the fully differentiated adult liver is regulated not 
only by changes in transcription factors (33,34) but also by a 
relevant set of post-transcriptional splicing events (31). The 
importance of alternative splicing in the maintenance of the 
hepatic phenotype is evidenced by the fact that the liver, 
together with the brain and testis, is the organ with the 
greatest diversity in transcripts associated with alternative 
exon or splice site usage (35).

The liver is a highly specialized and differentiated 
organ, however as mentioned above HCC fundamentally 
develops on cirrhotic tissues where the characteristic 
hepatic functions have been significantly blunted. This 
progressive loss of functions is linked to changes in the 
profile of gene expression and switches in isozymes 
expression towards a more fetal-like and de-differentiated 
landscape. These changes are largely associated with 
alterations in the expression of transcription factors which 
include the inhibition of HNF4 and the induction of 
Wilms’ tumor 1 in human cirrhosis and HCC (36-38). In 
fact, enforced expression of HNF4α attenuates hepatic 
fibrosis (39), reverses terminal chronic hepatic failure (40),  
and blocks HCC occurrence in rats (41), while its depletion 
fosters hepatocarcinogenesis (42,43). Other example 
would be the dysregulation of the HIPPO/YAP cascade. 
Nuclear staining of the transcriptional co-activator YAP 
is detected in 50% of human HCCs suggesting a role 
for YAP activation (44). Accordingly, the activation of 
endogenous YAP perturbs hepatocyte differentiation 
and maintains this immature state in advanced tumors in 
mice (45). Interestingly, YAP silencing in mouse HCC 
restores hepatocyte differentiation and leads to tumor 
regression (45). As discussed below downregulation of 
the zinc finger transcription factor Krüppel-like factor 
6 (KLF6), and its altered splicing pattern, is observed in 
early human hepatocarcinogenesis and is also related with 
hepatocellular de-differentiation (46).

More recently, it has been demonstrated that the 
preservation of a liver-specific transcriptional profile 
depends to a great extent on the correct expression of three 
splicing factors, the SR-protein SRSF3 (29), the pre-mRNA 
splicing factor SLU7 (30) and epithelial splicing regulatory 
protein 2 (ESRP2) (31). These studies show that the hepatic 
depletion or reduction of expression of SRSF3, SLU7 or 
ESRP2 in mice impact significantly on the mature and 
metabolically functional phenotype of the liver, changing 
not only the alternatively spliced transcriptome profile but 
also the rate of transcription of oncofetal genes such as alfa-
fetoprotein (AFP) and the non-coding RNA H19, as well 

as metabolic and proliferation-related genes (29,30). In 
addition, the data demonstrates a complex cross-regulation 
among the different effectors and pathways. For instance, 
reduced expression of SLU7 results in altered splicing and 
diminished expression of SRSF3 and changes in the use of 
HNF4 promoter, from the adult-specific P1 promoter to 
the fetal/oncogenic P2 promoter (30,38). Importantly, in 
support of the relevance and pathological implications of 
these findings, the expression of SRSF3, SLU7 and ESRP2 
is significantly reduced in human HCC (19,47,48), and 
that of SLU7 is also impaired in the preneoplastic cirrhotic  
liver (47). More specifically, it has been demonstrated that 
the hepatocyte-specific knockdown of SRSF3 in mice results 
in the spontaneous development of HCC (48), further 
emphasizing the relevance of hepatic de-differentiation in 
the process of hepatocarcinogenesis.

Recently, muscleblind-like-3 (MBNL3) has been 
identified as a liver oncofetal splicing factor expressed 
at high levels in fetal livers, silenced in adult livers and 
reexpressed in HCC tissues (49). Its oncogenic function has 
been linked to the inclusion of exon 4 into the lncRNA-
PXN-AS1 and the subsequent upregulation of the 
cytoskeletal oncoprotein paxillin (PXN) (49).

The  ce l l  f a te  de terminant  NUMB i s  a  d i rec t 
transcriptional target of the WNT pathway and a negative 
regulator of NOTCH signaling promoting hepatocyte 
differentiation (50). The upregulation of an aberrant 
alternatively spliced isoform of NUMB after the inclusion 
of exon 12 (PRRL isoform) has been detected in HCC and 
it is associated with early recurrence and reduced overall 
survival after surgery (51). Mechanistically, this splicing event 
is inhibited by the splicing factor RBFOX2 and promoted by 
the cytoplasmic retention of the SR-protein kinase SRPK2 
through its interaction with the chaperon HSP90 (51). In 
fact, the presence of NUMB PRRL isoform was proposed 
as a biomarker in HCC to stratify patients to be treated 
with HSP90-targeted drugs (51,52). In this same line, a 
differentiation therapy for HCC has been proposed using 
miR-148a mimics, which mediate hepatocyte differentiation 
through the upregulation of NUMB expression (53). 

Many metabolism-related enzymes are expressed as 
cell-type specific isoforms regulated by alternative splicing. 
In fact, many de-differentiation events observed during 
the process of hepatocarcinogenesis represent switches 
of alternatively spliced metabolic enzyme isoforms. In 
general, mature liver-specific isoforms are replaced by fetal 
isoforms or isoforms normally expressed in other tissues 
(20,21,54).  
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Alterations of splicing and HCC metabolic 
reprogramming

As mentioned above, many metabolism-related genes are 
regulated by alternative splicing. Cancer is recognized 
as a disease of energetic metabolism and the metabolic 
reprogramming of cancer cells, including the use of 
glucose, glutamine and fructose is facilitated by changes in 
the expression of mutually exclusive alternatively spliced 
isoforms of metabolic enzymes (54). 

Fructose is mainly catabolized in the liver by the high 
affinity enzyme fructokinase C (KHK-C) an isoform mainly 
expressed in hepatocytes generated by the incorporation 
of alternative exon 3C into the mRNA (55). However, 
in HCC cells RBP hnRNPH1/2 promotes the exclusion 
of exon 3C and the inclusion of exon 3A to generate 
the isoform KHK-A. This results in a reduced fructose 
metabolism rate preventing enhanced ROS generation 
and uncontrolled lipid production, along with promoting 
glucose-derived de novo nucleic acid synthesis through 
phosphorylation of phosphoribosyl pyrophosphate 
synthetase 1 (PRPS1) (54). Therefore, this splicing 
switch supports tumorigenesis and allows the coordinated 
regulation of glucose and fructose metabolism in HCC  
cells (54). Importantly, hnRNAPH1/2 expression is 
regulated by cMYC and the expression of cMYC, 
hnRNPH1/2 and KHK-A is correlated and significantly 
up-regulated in HCC tissues, being independent prognostic 
factors for overall survival (54).

Aerobic glycolysis or Warburg effect plays a crucial 
role in the process of carcinogenesis (11). Pyruvate kinase 
(PK) catalyzes the last committed step in glycolysis, the 
conversion of phosphoenolpyruvate (PEP) to pyruvate. 
The main isozyme expressed in the liver is PKL, however, 
alternative splicing of the isozyme pyruvate kinase M 
(PKM) is an important determinant of the Warburg 
effect of cancer cells versus differentiated cells (56). Two 
isoforms PKM1 and PKM2 are expressed through mutually 
exclusive alternative splicing of exons 9 and 10 (57),  
being PKM2 expressed during embryogenesis, tissue 
regeneration, and tumor development (58). Interestingly, 
PKM2 overexpression in HCC is associated with poor 
prognosis (59). Mechanistically, hnRNPA1/hnRNPA2 have 
been shown to inhibit exon 9 inclusion, favoring PKM2 
expression (60). As mentioned before hnRNPA1/hnRNPA2 
expression is induced in HCC (25) which could be due to 
cMYC activation (60) or SLU7 downregulation (30) both 
events observed in HCC (47,54).  

The alternative splicing of exon 11 into the insulin 
receptor (IR) mRNA is developmentally regulated in a 
tissue-specific manner. The fetal liver expresses IR-A 
isoform and the skipping of exon 11 confers a higher 
affinity not only for insulin but also for insulin like growth 
factor II (IGF-II), a growth factor mainly implicated in 
proliferation (61). The differentiated adult liver expresses 
almost exclusively the IR-B isoform containing exon 11 
and, being involved in the metabolic effects of insulin (61). 
Interestingly, the ratio IR-A/IR-B is significantly increased 
in HCC and in a model of hepatocarcinogenesis in rats (25)  
suggesting a role in the transformation of hepatocytes. 
Mechanistically this dysregulation of IR splicing can be 
induced by the upregulation of hnRNPA1 (25) or the 
downregulation of SRSF3 (29) or SLU7 (30), all three 
events observed in human HCC (25,29,47).

Alterations of splicing and genome instability in 
HCC

Genomic instability is considered an enabling characteristic 
of cancer cells endowing them with genetic alterations 
that support their growth (11). Genome instability can be 
the result of increased DNA damage and accumulation of 
mutations or mitotic errors associated with chromosome 
alterations. Alternative splicing has been implicated in 
the regulation of both processes and splicing factors are 
emerging as gatekeepers of genome stability (62,63).

Chromosome instability (CIN) affecting the number 
and structure of chromosomes is one of the most common 
alterations in HCC (64). Several splicing events affecting 
proteins implicated in the mitotic spindle checkpoint 
(MSC), which is responsible for inducing mitosis arrest to 
prevent chromosome mis-segregation, have been described 
in HCC.  For instance, an aberrant isoform deleted in 
exon 4 (MAD1beta) of the mitotic arrest deficient 1 
(MAD1) gene is induced in 24% of HCCs (65). MAD1beta 
sequesters MAD2 in the cytoplasm preventing its function 
as controller in the mitotic checkpoint and inducing the 
formation of chromosome bridges and aneuploidy (65). Its 
relevance in hepatocarcinogenesis is supported by the fact 
that heterozygous deletion of MAD1 in mice results in the 
development of HCC (66). The splicing factors implicated 
in this aberrant event have not been characterized yet. 

Another important player in MSC is the serine/threonine 
kinase Aurora B (AURKB) which is overexpressed in 
HCC (67). Importantly, aberrant splicing isoforms are also 
induced, and in particular a small percentage of patients 
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overexpress a variant lacking exon 6 (AURKB-Sv2) which 
correlates with poor prognosis (67). This isoform, deprived 
of the kinase activity, could act as dominant negative of 
AURKB and participate in the induction of CIN (67). 
Again, the mechanisms and splicing factors implicated in 
this aberrant event have not been elucidated. 

Correct sister chromatid cohesion (SCC) is essential 
to secure the proper segregation of chromosomes during 
mitosis. Shugoshins (SGO) are proteins required for the 
correct cohesion of centromeres (68) and the heterozygous 
deletion of SGO1 in mice induces CIN and the development 
of HCC (69). Importantly a splicing isoform (sSGO1) 
lacking exon 6 is located at the centrosomes instead of at 
the centromeres being a guardian of centriole cohesion (70), 
and sSGO1 overexpression induces multipolar cells and 
chromosome mis-segregation (71). The induction of SGO1 
expression has been described in HCC (72), however the 
characterization of the splicing isoforms expressed and in 
particular sSGO1 expression has not been addressed. Our 
observations demonstrate that SLU7 knockdown induces 
the depletion of exon 6 and the induction of sSGO1 (73), 
suggesting that sSGO1 expression deserves further studies 
in HCC and could be implicated in the induction of CIN. 
Our data also shows that SLU7 plays a more general role 
in maintaining SCC and securing chromosome stability. 
Sororin (CDCA5) is essential to maintain SCC (74). We 
have demonstrated that SLU7 downregulation induces the 
aberrant incorporation of introns 1 and 2 into the mRNA of 
sororin, inducing its degradation by the NMD machinery 
and resulting in reduced protein levels (73). Consequently, 
SLU7 silencing results in defects in SCC and mitosis arrest 
in HCC cells (73).

DNA damage occurs mainly because of errors during 
replication, exposure to oxidative stress and damaging 
agents, and RNA transcription-dependent formation of 
RNA-DNA hybrids or R-loops (63,75). DNA damage is 
present in the liver of cirrhotic patients and in HCC, as 
evidenced by the increased detection of the biomarker 
γH2AX (76). DNA damage has been demonstrated as 
determinant in the induction of HCC in mice (77,78). 
Cells are endowed with systems to sense and respond to 
DNA damage, and a potent DNA damage repair (DDR) 
machinery is activated in the cell to prevent the fixation of 
mutations. Recently the existence of an important interplay 
between the DNA damage response and RNA processing 
has been recognized (63). RBPs play an important role 
regulating not only the transcription and splicing of 
DDR sensors and effectors, but also controlling directly 

the DDR in a splicing-independent manner (63,79,80). 
RNA-transcription is also a source of genome instability 
through the formation of RNA-DNA hybrids (R-loops). 
These R-loops are formed between the nascent mRNA 
and the template strand of the DNA, leaving the coding 
DNA strand exposed to damaging agents (81). R-loops 
are generated physiologically and are processed by 
RNase H1, however they can accumulate under certain 
conditions including diminished expression of RBPs, 
promoting mutations, recombination and chromosome 
rearrangements (63,81,82). Recently it has been shown that 
RNAse H1 depletion in the liver of mice results in R-loops 
accumulation and the impairment of liver function (83). 
The depletion of SRSF1 and SRSF3 has been associated 
with the accumulation of R-loops (84). The downregulation 
or mislocalization of SRSF3 observed in HCC (24,48) could 
therefore participate in the induction of R-loops promoting 
genome instability.

Alterations of splicing and cell cycle progression 
in HCC

As mentioned above, RNA processing and alternative 
splicing affect most of the genes expressed in humans (1).  
The splicing landscape is reprogrammed in cancer cells (13) 
and alterations of splicing represent one of the mechanisms 
used by cancer cells to activate oncogenes or inactivate 
tumor suppressor genes (TSGs). In fact, global profiling 
of alternative RNA splicing events in HCC reveals the 
existence of alternative splicing signatures associated with 
different types of HCC (20). As already discussed, these 
changes can be linked to mutations in specific splicing 
regulation sites or to changes in RNA splicing factors that 
act as oncoproteins or TSGs (9,15). In fact, many of the 
already discussed alterations of splicing observed in HCC 
such as CCDC50, PXN, IR-A and PKM2, affect cell cycle 
progression inducing cell proliferation and/or cell survival. 
In this section we will describe two examples of well-
characterized pathways connecting altered cell signaling 
with dysregulated splicing factors expression, and the 
inactivation of TSG transcription factors in HCC. 

The transcription factor and tumor suppressor gene 
KLF6 regulates cell differentiation, proliferation and 
survival, and it is expressed as four splicing isoforms (85).  
KLF6-SV1 isoform lacks the three zinc finger DNA 
binding domains acting as dominant-negative and 
antagonizing KLF6, leading for instance to decreased 
p21 expression and increased cell growth (86). Reduced 
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KLF6 expression has been described in HCC and an 
increased SV1/KLF6 ratio is associated with aggressive 
clinical behavior both in human and in mice (46,87). The 
mechanisms implicated in the splicing inactivation of 
KLF6 have been described. SRSF1 is required to express 
the full length KLF6 mRNA (88), and SV1 induction 
is associated with RAS/PI3K/AKT activation (88)  
and hepatocyte growth factor signaling (HGF) (89) in 
HCC cells. Mechanistically, HGF induces c-MET and 
PI3K/AKT signaling and downregulates SRSF3 expression 
which is required for the correct splicing and expression of  
SRSF1 (89). SRSF1 mRNA degradation by NMD and 
its protein reduction favor KLF6 splicing, SV1 isoform 
expression and its oncogenic properties (89). All together 
these data suggest that c-MET activation, SRSF3 
downregulation, and KLF6-SV1 induction could represent 
coordinated events useful to identify subgroups of HCC 
patients with specific targetable alterations.

The tumor suppressor gene P73 belongs to the P53 
gene family of transcription factors (90). A large number 
of isoforms are generated through alternative promoter 
usage and multiple alternative splicing events. Isoforms 
lacking the transactivation domain (TA) behave as dominant 
negative inhibitors of both TSGs, P73 and P53, displaying 
oncogenic properties (91). Interestingly, transgenic mice 
expressing an isoform lacking exons 2 and 3 in hepatocytes 
spontaneously develop HCC (92). We have demonstrated 

that the growth factor amphiregulin (AREG) activates 
EGFR and JNK1 to downregulate the expression of the 
splicing factor SLU7, which is responsible for the correct 
incorporation of exon 2 into P73 mRNA (47). The relevance 
of these results is supported by the fact that AREG expression 
is induced in parallel to the downregulation of SLU7 
expression and the induction of the p73 isoform defective in 
exon 2 (Ex2p73) not only in HCC but also in the preneoplastic 
cirrhotic liver (47).  

Conclusions and perspectives

HCCs are molecularly heterogeneous tumors, and this 
complexity is to a great extent responsible for their poor 
response to conventional and targeted therapies (16,93). 
The information summarized in this review indicates 
that imbalanced expression of splicing factors can be a 
relevant source for this heterogeneity. Moreover, we have 
also illustrated how these alterations may play a driver 
role in hepatocarcinogenesis by impinging on the general 
hallmarks of cancer. Having in mind the natural history 
of HCC we focused on two pathogenic features that are 
characteristic of liver tumors: chromosomal instability and 
phenotypic dedifferentiation. We highlight mechanisms 
connecting splicing derangement with these two processes 
and the enabling capacities acquired by liver cells along 
their neoplastic transformation (Figure 1). A thorough 
understanding of the alterations in the splicing machinery 
may also help to design novel therapeutic strategies. Indeed, 
relevant progress has been made in the identification of 
small molecules that can interfere with the activity of 
splicing factors at different levels, from their expression 
to their enzymatic or structural activities (14). However, 
their precise mechanisms of action are not always well 
characterized, and although cancer cells seem more 
susceptible to the inhibition of the splicing machinery than 
normal cells (94) unexpected toxicities may occur (95). 
RNA-based therapeutics using splice-switching antisense 
oligonucleotides (ASO) are also actively pursued (14). 
These ASO can target specific components of the splicing 
machinery, potentially avoiding toxic effects. However, their 
efficient delivery to target tissues is still a challenge (96), 
and in the case of HCC a critical one given the profound 
histological alterations of the cirrhotic liver on which HCCs 
develop. From a translational point of view, and as discussed 
in previous sections, the identification of splicing isoforms 
specific of HCC cells may provide robust biomarkers of the 
disease (7). Moreover, these HCC-specific variants could 

Figure 1 In the liver, during the process of hepatocarcinogenesis 
splicing alterations, including changes in both splicing factors 
and splicing events, are responsible for the dedifferentiation of 
the hepatocytes and the induction of genome instability, allowing 
the acquisition of the different capabilities required for neoplastic 
transformation. 
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constitute tumor associated antigens that may be harnessed 
for the development of cancer vaccines and immunotherapy 
strategies against liver tumors (97).
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