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Introduction

The branched chain amino acids (BCAAs),  valine 
(Val), leucine (Leu) and isoleucine (Ile), are essential 
amino acids for human beings and are involved in the 
pathophysiology of liver diseases (1). This review describes 
the biological properties of BCAAs and their clinical 
use in the management of liver cirrhosis. In addition, 
this review describes the role of BCAAs to suppress 
hepatocarcinogenesis and their potential role in the 
treatment of hepatocellular carcinoma (HCC).

Basic aspects of BCAAs in the liver

BCAAs and metabolism

BCAAs are involved in the metabolism of proteins, glucose 
and fats. BCAAs activate mammalian target of rapamycin 
(mTOR) signaling, stimulating the synthesis of glycogen 
and of proteins such as albumin (1,2). mTOR is involved in 
the phosphoinositide-3-kinase-protein kinase B (PI3K-Akt) 

signaling pathway (3) and plays central roles in cell growth (4),  
proliferation (5) and insulin resistance (6) (Figure 1). 

Glucose and lipid metabolism
BCAAs regulate the metabolism of glucose and lipids 
through the PI3K-Akt pathway. Ile was shown to mediate 
glucose uptake by PI3K independent of mTOR (7) and 
to decrease the level of plasma glucose (7). BCAAs have 
been shown to promote the uptake of glucose by skeletal 
muscle through activation of PI3K and protein kinase C, 
and subsequently induce glucose transporter translocation 
to the plasma membrane (8). Deficiencies in BCAAs 
reduce hepatic fatty acid synthesis, promote fatty acid 
β-oxidation and increase fat mobilization in white adipose 
tissue through the AMP-activated protein kinase (AMPK)-
mTOR-FoxO1 pathway (9,10). In adipose tissue, Leu 
increases insulin-induced phosphorylation of mTOR and 
Akt, and then enhances the uptake of glucose (11). In 
addition, BCAAs increase peroxisome proliferator-activated 
receptor (PPAR)-γ and subsequently uncoupling protein 
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2 (UCP2) in liver and UCP3 in muscle through glucose 
transporter 4 (GLUT4) translocation (12), stimulating 
oxidation of free fatty acids and reducing triglyceride 
concentrations in mouse livers (13). Thus, BCAAs regulate 
fatty acid synthesis, transport, oxidation, lipolysis and 
adipokine secretion by affecting the expression of genes 
encoding AMPKα, mTOR, sirtuin-1 (SIRT-1) and PPAR-γ 
coactivator-1α (PGC-1α) (14). Furthermore Krüppel-like 
factor 15, a transcription factor, was shown to be involved 
in regulating the metabolism of glucose, lipids and amino 
acids (15). 

Protein synthesis
BCAAs, especially Leu, contribute to protein synthesis 
through the mTOR pathway (16). Leu induces the 
phosphorylation of p70S6 kinase 1 (S6K1) and 4E-binding 
protein 1 (4EBP1) and the assembly of eukaryotic initiation 
factor 4E (eIF4E) in mTOR signaling (16), resulting 
in the synthesis of albumin (17-19). Leu also stimulates 
albumin mRNA translation through nuclear importation of 
polypyrimidine-tract-binding protein (20). 

BCAA metabolites, such as branched-chain α-keto acids 
(BCKA), β-hydroxy-β-methyl butyrate (HMB) and glutamate, 
are also involved in regulating protein synthesis (21).  
BCKAs were shown to decrease protein expression in 
cardiomyocytes through mTORC2-Akt signaling (22). 
HMB was also shown to be involved in muscle protein 
synthesis and degradation through the mTOR signaling 
pathway, mainly through mTORC1 (23-25). 

Insulin resistance
The activation of mTORC1 promotes insulin resistance 
through serine phosphorylation of insulin receptor substrate 
(IRS)-1 and IRS-2 (3). Serum BCAA concentrations were 
found to be elevated in mice lacking mitochondrial BCAA 
aminotransferase that catalyzes BCAAs. Those mice show 
lower fasting blood glucose and insulin concentrations, and 
homeostasis model assessment scores for insulin resistance 
(HOMA-IR) were significantly lower as compared with 
those in wild-type mice (26). Furthermore, administration 
of Leu or Ile improved insulin sensitivity in mice fed with 
high-fat diets (27,28). Improvement of insulin resistance 
by BCAAs has been found to be achieved by several 
mechanisms (1). For example, BCAAs were found to 
stimulate liver-type glucokinase and glucose transporter (29),  
as well as to suppress hepatic expression of glucose-6-
phosphatase. BCAAs were also reported to transiently 
increase plasma concentrations of insulin in healthy 
individuals (30). BCAAs were found to improve HOMA-IR 
scores and the function of beta cell in patients with chronic 
liver disease (31). These results strongly suggest that BCAAs 
can ameliorate insulin resistance (1).

BCAA and hepatocyte proliferation 

BCAA has been associated with cell proliferation through 
activation of mTORC1 (32). In a rat model of CCl4-induced 
liver injury, the supplementation of BCAA was shown to 
suppress hepatocyte apoptosis leading to retardation of the 
progression of the injury (33). In contrast, BCAAs enhanced 

Figure 1 Mechanism of BCAAs-stimulated mTOR signaling and hepatocarcinogenesis. PI3K-Akt, phosohoinositide-3-kinase protein kinase B; 
p70S6K1, p70 S6 kinase 1; IRS-1, insulin receptor substrate; mTOR, mammalian target of rapamycin; BCAAs, branched-chain amino acids.
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hepatocyte regeneration in a rat hepatectomy model (34) 
and were shown to increase the secretion of hepatocyte 
growth factor (35). BCAAs are also shown to suppress 
oxidative stress by stimulating the expression of PGC-
1α or SIRT-1 (36), or by activating the genes involved in 
antioxidant defenses (37). Those mechanisms could also 
contribute to promote hepatocyte proliferation.

BCAA and immunity

Nutrition is shown to be closely associated with the 
maturation or activation of immunity, and BCAAs are 
reported to be directly involved in the proliferation of 
lymphocyte or the maturation of dendritic cells (DCs) (1).  
All of the three BCAAs are shown to be requisite for 
mitogen-induced lymphocyte proliferation (38), and Val 
has the most prominent effect for the proliferation of 
lymphocytes. 

The importance of BCAAs for immunity has been also 
shown in/by vivo studies. We previously evaluated the role of 
BCAAs on the local immune function in the liver and spleen 
of rats (36). We found that supplementation of BCAAs 
increased the numbers of intrahepatic lymphocytes and 
stimulated natural killer (NK) cells and lectin-dependent 
cytotoxic activities in the liver. It is of note that the number 
of lymphocytes isolated form the liver was increased as 
the concentrations of Val increased in plasma and liver. 
Importance of valine for the stimulation of immune response 
is supported by a report by Kakazu et al., in which they 
report the critical role of Val in the maturation of DCs (37).  
These findings indicate that Val may have a therapeutic 
potential for reducing hepatocarcinogenesis in patients with 
cirrhosis by restoring the immune functions (1,37,39). 

In patients with liver cirrhosis, BCAA supplementation 
has been shown to increase the numbers of intrahepatic 
lymphocytes and restores the phagocytic activity of 
neutrophils and NK activity (40,41). Furthermore, the 
supplementation of BCAAs was shown to increase the 
number of circulating lymphocytes in postsurgical patients 
(42,43). BCAA supplementation in patients with chronic 
hepatitis C can restore malnutrition-association impairments 
in interferon signaling through the mTOR and FoxO 
pathways (44). Interestingly, supplementation of Val was 
shown to reduce hepatitis C viral load, which could be caused 
by enhancing DC function or interferon signaling (45).  
BCAAs were also shown to increase immunoglobulin A 
secretion, which could enhance mucosal surface defenses (46).  
Thus, BCAAs could regulate both innate and adaptive 

immune responses. 

Serum concentration of BCAAs in cirrhotic 
patients

In patients with advanced cirrhosis, decreased serum 
concentrations of BCAA and increased concentrations of 
aromatic amino acids (AAAs), phenylalanine and tyrosine, 
are often found, resulting in a decreased ratio of BCAAs 
to AAAs, called the Fischer ratio (47). A decreased Fischer 
ratio is thought to be a cause of hepatic encephalopathy 
(HE) (1). Fischer ratio tends to become lower with the 
progression of cirrhosis, which could help assess the 
prognosis of cirrhotic patients with or without HCC 
(48,49). Moreover, a simplified Fischer ratio, the BCAA to 
tyrosine ratio (BTR), has been shown to be useful for the 
prediction of albumin concentration 1 year later (50). BTR 
was also reported to be useful in predicting the prognosis 
of patients with liver cirrhosis (51). These data suggest that 
the imbalance of amino acid, either decreased Fischer ratio 
or BTR, is an indicator for progression and prognosis of 
cirrhosis, and that correcting either ratio may be useful not 
only for nutritional improvement, but also for prevention of 
HE, in patients with cirrhosis (1).

Clinical application of BCAA supplementation in 
liver cirrhosis

BCAAs for liver cirrhosis

Since the liver is a central organ for nutrient metabolism, 
cirrhotic patients may develop various metabolic 
complications (52). Patients with cirrhosis frequently show 
protein and energy deficiencies. Protein deficiencies could 
lead to hypoalbuminemia, resulting in ascites retention and 
hepatic edema, whereas energy deficiencies could reduce fat 
and muscle mass and cause muscle weakness, both of which 
may significantly reduce their quality of life (QOL) (53). 
Significant improvement of QOL and prognosis in patients 
with cirrhosis can be achieved by the supplementation 
of BCAA. Two randomized trials showed a significant 
improvement of Short Form-36 scores of general health 
perception by BCAA supplementation (54,55). Another 
randomized study showed that BCAA supplementation 
improved weakness and fatigue (56). The supplementation of 
BCAA was also reported to improve sleep disturbance (57).

A large-scale post marketing study in Japan showed 
that oral BCAA administration significantly reduced the 
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incidence of complications such as liver failure, esophageal 
varices rupture, HCC, and death (55). Furthermore, the 
supplementation of BCAA in cirrhotic patients showed 
the improvement of glucose metabolism and an increase 
in serum albumin concentration (58), and the effect of 
BCAA on maintenance or an increase in serum albumin 
concentrations in patients with both compensated and 
decompensated cirrhosis was confirmed by a randomized 
study (59). The effect of BCAA supplementation on serum 
albumin concentration may be more effective in the early 
stages of cirrhosis than in the advanced stage, which could 
enhance total hepatic parenchymal volume (60-62). 

Accelerated fat oxidation and a catabolic state after fasting 
are frequently observed in cirrhotic patients, which can be 
presented by a decrease in respiratory quotient (RQ) (63).  
A late evening snack containing BCAA was shown to 
improve RQ, nutritional state and glucose intolerance 
(63,64). Since BCAAs have a higher energy efficiency 
than glucose or fatty acids, BCAAs may be the preferred 
nutrients for cirrhotic patients (65). 

The guidelines of the European Society for Clinical 
Nutrition and Metabolism and the Study Group for the 
Standardization of Treatment of Viral Hepatitis Including 
Cirrhosis of the Ministry of Health, Labour and Welfare of 
Japan recommend BCAA supplementation in the treatment 
of advanced cirrhosis due to those preferential effects of 
BCAAs (1,66,67). 

BCAA for HE

HE is a major and serious complication of advanced 
cirrhosis associated with decreased QOL in those patients, 
and often shows recurrence. Increased blood ammonia is 
usually found in HE patients, and ammonia is a pathogenic 
factor for HE development (68). BCAAs are used for the 
treatment of HE especially in cirrhotic patients, with 
preferential effects in most cases. The effects of BCAAs are 
not due to decrease in blood ammonia levels, but is thought 
to be due to the correction of a decreased Fischer ratio 
in patients with HE. HE frequently occurs in advanced 
cirrhotic patients after gastrointestinal bleeding, which is 
possibly associated with an absence of Ile and an abundance 
of Leu in hemoglobin molecules. The blood proteins with 
imbalanced BCAAs are absorbed from the gut lumen, 
leading to HE by way of BCAA antagonism (69).

A systematic review showed that BCAAs appeared to 
be beneficial on HE without adverse events (70,71). In 
contrast, two randomized studies showed that BCAAs 

did not clearly prevent HE in advanced cirrhotic patients 
(54,55). Furthermore, postoperative BCAA supplementation 
did not prevent the development of postoperative HE (72).  
Recently, a randomized, double-blind, multicenter study 
found that the supplementation of BCAAs did not reduce 
the recurrence of HE, although minimal HE can be 
prevented and muscle mass reduction can be recovered (73).  
Moreover, a systematic review showed that oral but not 
intravenous supplementation of BCAAs improved HE 
development (74). Non-absorbable disaccharides, which is 
much cheaper than BCAAs, have been shown to improve the 
development of HE and prevent overt HE, suggesting that 
non-absorbable disaccharides should be used for HE first, 
with BCAAs considered as the second line treatment (74).  
A meta-analysis showed that oral supplementation of 
BCAAs in patients with cirrhosis inhibited manifestations 
of HE especially in patients with overt HE rather than in 
those with minimal HE (66). Thus, oral administration of 
BCAAs, especially in combination with non-absorbable 
disaccharides, should be the treatment of choice in cirrhotic 
patients with HE (1).

Sarcopenia

Sarcopenia is an age-related progressive loss of skeletal muscle 
volume that leads to muscle weakness (75), and is associated 
with poor prognosis in patients with cirrhosis (76-78). 
Sarcopenia may be due to reduced muscle protein synthesis 
(79,80), and deficiencies in essential amino acids including 
BCAAs are thought to contribute to these processes (81,82). 
For example, Leu can stimulate mTOR signaling including 
S6K1 and 4E-BP1, leading to translation of mRNAs encoding 
ribosomal proteins (83,84), as well as in older rats (85).  
A recent clinical study showed that mTOR signaling is 
impaired and autophagy is increased in cirrhotic patients, and 
that these alterations can be reversed by supplementation 
with Leu-enriched BCAAs (86). 

In clinical settings, supplementation with BCAAs, 
especially Leu, may increase skeletal muscle loss by 
activating mTOR signaling (86,87). However, the 
improvements in muscle volume were limited only 
to patients who showed improvements in metabolic 
parameters (87). Nutritional intervention with high-protein 
diets in elderly individuals, however, showed negative 
results (79,88). A recent study suggested that the effect 
of BCAA supplementation may be strengthened by light 
exercise, which upregulates amino acid transporter in 
skeletal muscle (89), and a prospective study also showed 
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that BCAA supplementation and exercise had beneficial 
effects in cirrhotic patients (90). BCAA supplementation 
for sarcopenia in cirrhotic patients should therefore be 
combined with adequate exercise. 

Insulin resistance

Insulin resistance is often observed in patients with 
chronic hepatitis C virus (HCV) infection, which are 
thought to be associated with various complications, 
such as steatosis, disturbances in glucose metabolism, 
and hepatocarcinogenesis (91). BCAAs, especially Leu 
and Ile, were shown to have beneficial effects on glucose  
metabolism (92). It has been revealed that BCAAs directly 
act on insulin target organs, such as adipose tissue, skeletal 
muscles, and the liver (93). Intravenous administration 
of BCAAs was shown to decrease plasma glucose levels 
in advanced cirrhotic patients (94), and oral BCAA 
supplementation was shown to reduce both blood glucose 
levels (95,96) and insulin resistance in male patients 
with cirrhosis (31,97). Furthermore, long-term BCAA 
administration was reported to improve glucose tolerance 
in patients with nonalcoholic steatohepatitis (NASH)-
related cirrhosis, suggesting that long-term BCAA may 
be an effective treatment for NASH (98). A randomized 
study showed that BCAA treatment decreased HbA1c 
concentrations and improved insulin resistance in patients 
with chronic hepatitis C (99). 

BCAA in the prevention and treatment of HCC

Prevention of HCC by BCAA

HCC usually develops in patients with chronic liver 
diseases, especially liver cirrhosis. Chronic inflammation 
and fibrosis are thought to be the major mechanisms for 
the development of HCC, with chronic hepatitis B virus 
(HBV) or HCV infection being the leading cause of HCC. 
Although viral eradication is likely the most effective 
strategy for preventing the development of HCC in patients 
with chronic HCV infection (100), elderly patients and 
patients with advanced liver fibrosis were found to develop 
HCC even after complete eradication of HCV by direct-
acting antivirals (101). Nucleos(t)ide analogs have been 
found to strongly suppress viral replication in patients 
with chronic HBV infection, significantly inhibiting the 
development of HCC. However, hepatocarcinogenesis 
can still be observed in patients with undetectable HBV-

DNA but high levels of serum HBV surface antigen (102). 
Therefore, other supportive therapies are needed to 
suppress HCC development in those patients.

Inhibition of HCC cell proliferation by BCAA in vitro 
Early in vitro studies showed that increased BCAA/AA  
ratios (103) in the medium inhibited the proliferation of 
HepG2 liver tumor cells. BCAAs were found to decrease the 
expression of insulin-like growth factor-1 (IGF-1) receptor 
on HepG2 cells, leading to a decrease in insulin-mediated 
proliferation of HepG2 cells (104). In the presence of high 
insulin concentrations, BCAAs were also found to reduce 
the expression of vascular endothelial growth factor (VEGF) 
by HepG2 cells, an effect mediated by shortening of VEGF 
mRNA (105). Although these findings suggest that BCAAs 
directly inhibit the growth of HCC cells, studies are needed 
to show whether BCAAs can clinically inhibit tumor growth 
inhibition.

BCAAs were shown to reduce the expression of a cancer 
stem cell marker, epithelial cell adhesion molecule, via 
the mTOR pathway, thereby increasing tumor sensitivity 
to 5-flourouracil (106). Clinical trials showed that BCAA 
supplementation synergized with acyclic retinoid (107) 
or sorafenib (108) in tumor treatment, suggesting that 
combination of BCAAs and anticancer drugs can potentiate 
the antitumor effects of the latter.

Prevention of HCC development in animal models
Obese diabetic rats spontaneously develop liver tumors. 
BCAA supplementation was shown to inhibit  the 
development of preneoplastic lesions in these rats, an effect 
mediated by the suppression of VEGF expression (109). 
BCAAs showed similar antitumor effects in obese diabetic 
mice (110).

BCAAs in clinical trials
A report from Japan revealed that BCAA supplementation 
reduced the development of HCC in obese [body mass 
index (BMI) >25 kg/m2] cirrhotic men and in those with 
alpha-fetoprotein levels >20 ng/mL (111). Another Japanese 
study also showed that BCAA supplementation (for longer 
than 6 months) significantly reduced HCC occurrence 
while enhancing event-free survival rates in Child-Pugh 
grade A cirrhotic patients (112). Those results are coincided 
with the preferential antitumor effects observed in animal 
models. Although there are no other data showing that 
BCAAs suppress hepatocarcinogenesis in cirrhotic patients, 
BCAA supplementation is thought to have beneficial effects 
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on the suppression of the liver cancer development, an 
effect that may be associated with improvements in insulin 
resistance and/or the suppression of VEGF expression.

BCAA administration as supportive therapy during 
treatment of HCC
BCAA supplementation in patients undergoing liver 
resection for HCC resulted in a shorter hospital stay and 
rapid improvements in liver function after surgery (113).  
In addition, BCAA supplementation was found to increase 
protein metabolism and suppress progression to liver 
cirrhosis after hepatectomy for HCC (114). A recent 
randomized controlled trial showed that preoperative 
administration of BCAAs before liver resection for HCC 
resulted in a lower frequency of ascites and higher serum 
albumin concentrations postoperatively (111). BCAA 
supplementation also suppressed early recurrence after liver 
resection for HCC (115). 

In contrast to these findings, one report showed that 
pre-, peri-, and post-postoperative supplementation with 
BCAAs did not reduce tumor recurrence rate or improve 
overall survival after liver resection (116). Despite these 
findings, the results of most studies indicate that BCAA 
supplementation has beneficial effects following liver 
resection. 

Recent studies have assessed the effects of BCAA 
supplementation as supportive therapy during treatment 
for HCC. Patients with HCC are frequently treated by 
radiofrequency ablation (RFA) or transcatheter arterial 
chemoembolization (TACE). BCAA supplementation in 
patients undergoing RFA has been shown to maintain 
patient QOL (general health, physical functioning and 
social functioning) (117), liver function and serum albumin 
levels (118), and to improve overall survival and recurrence-
free survival (119). BCAA supplementation showed similar 
results in HCC patients undergoing TACE (120) or 
radiotherapy (121).

Collectively, BCAA administration has various benefits, 
such as preventing the development of HCC in patients 
with liver cirrhosis, improving or maintaining liver reserve 
functions during invasive treatments for HCC, and 
enhancing overall survival after curative treatment for HCC. 
However, BCAA formulations are expensive and most 
reports to date have been from Japan. It will be necessary to 
analyze the cost effectiveness of BCAA supplementation in 
patients with liver cirrhosis or HCC, as well as to assess the 
effects of BCAA supplementation in non-Japanese patient 
populations.

Conclusions

BCAAs have been shown to have various biological 
effects, including the promotion of protein synthesis and 
hepatocyte proliferation, simulation of immune systems, 
improvement of insulin resistance, inhibition of liver 
cancer cell proliferation and neovascularization. All of these 
findings indicate that BCAAs may have beneficial effects 
on the management of patients with chronic liver diseases 
with/without HCC.
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